
User Manual

Nexto Series CPUs

NX3004, NX3005, NX3010,
NX3020, NX3030

Rev. J 07/2017

Doc. Code.: MU214605

General Supply Conditions

 i

No part of this document may be copied or reproduced in any form without the prior written consent

of Altus Sistemas de Automação S.A. who reserves the right to carry out alterations without prior

advice.

According to current legislation in Brazil, the Consumer Defense Code, we are giving the following

information to clients who use our products, regarding personal safety and premises.

The industrial automation equipment, manufactured by Altus, is strong and reliable due to the
stringent quality control it is subjected to. However, any electronic industrial control equipment

(programmable controllers, numerical commands, etc.) can damage machines or processes controlled

by them when there are defective components and/or when a programming or installation error

occurs. This can even put human lives at risk.

The user should consider the possible consequences of the defects and should provide additional

external installations for safety reasons. This concern is higher when in initial commissioning and

testing.

The equipment manufactured by Altus does not directly expose the environment to hazards, since

they do not issue any kind of pollutant during their use. However, concerning the disposal of

equipment, it is important to point out that built-in electronics may contain materials which are

harmful to nature when improperly discarded. Therefore, it is recommended that whenever
discarding this type of product, it should be forwarded to recycling plants, which guarantee proper

waste management.

It is essential to read and understand the product documentation, such as manuals and technical
characteristics before its installation or use.

The examples and figures presented in this document are solely for illustrative purposes. Due to

possible upgrades and improvements that the products may present, Altus assumes no responsibility
for the use of these examples and figures in real applications. They should only be used to assist user

trainings and improve experience with the products and their features.

Altus warrants its equipment as described in General Conditions of Supply, attached to the

commercial proposals.

Altus guarantees that their equipment works in accordance with the clear instructions contained in

their manuals and/or technical characteristics, not guaranteeing the success of any particular type of

application of the equipment.

Altus does not acknowledge any other guarantee, directly or implied, mainly when end customers are

dealing with third-party suppliers.

The requests for additional information about the supply, equipment features and/or any other Altus
services must be made in writing form. Altus is not responsible for supplying information about its

equipment without formal request.

These products use EtherCAT® technology (www.ethercat.org).

COPYRIGHTS

Nexto and MasterTool are the registered trademarks of Altus Sistemas de Automação S.A.

Windows, Windows NT and Windows Vista are registered trademarks of Microsoft Corporation.

OPEN SOURCE SOFTWARE NOTICE

To obtain the source code under GPL, LGPL, MPL and other open source licenses, that is contained

in this product, please contact opensource@altus.com.br. In addition to the source code, all referred

license terms, warranty disclaimers and copyright notices may be disclosed under request.

http://www.ethercat.org/
mailto:opensource@altus.com.br

Summary

 ii

Table of Contents

1. INTRODUCTION ...1

Nexto Series ..2
Innovative Features ..3

Documents Related to this Manual ...4
Visual Inspection..5
Technical Support ..5
Warning Messages Used in this Manual ...5

2. TECHNICAL DESCRIPTION ...6

Panels and Connections ...6
General Features..8

Common General Features ...8
Specific Features..9
Serial Interfaces ... 12
Ethernet Interfaces ... 13
Power Supply .. 14

Compatibility with Other Products ... 15
Performance ... 15

Application Times ... 15
Time for Instructions Execution ... 16
Initialization Times .. 16
Interval Time ... 16

Physical Dimensions .. 17
NX3004/NX3005 ... 17
NX3010/NX3020/NX3030 .. 18

Purchase Data .. 19
Integrant Items ... 19
Product Code ... 19

Related Products .. 19

3. INSTALLATION ... 21

Mechanical Installation ... 21
NX3004 and NX3005 .. 21
NX3010, NX3020 and NX3030 ... 21

Electrical Installation... 21
NX3004 and NX3005 .. 21
NX3010, NX3020 and NX3030 ... 22

Ethernet Network Connection ... 23
IP Address ... 23
Gratuitous ARP ... 24
Network Cable Installation ... 24

Serial Network Connection RS-232 ... 25
RS-232C Communication .. 25

Serial Network Connection RS-485/422 .. 25
RS-485 Communication without termination.. 26
RS-485 Communication with Internal Termination .. 27
RS-485 Communication with External Termination ... 28
Example of Connection of a RS-485 Network with External Termination and Master Redundancy 28
RS-422 Communication without Termination .. 29

Summary

 iii

RS-422 Communication with Internal Termination .. 30
RS-422 Communication with External Termination ... 31
RS-422 Network Example ... 31

Memory Card Installation ... 32
Architecture Installation ... 33

Module Installation on the Main Backplane Rack ... 33
Programmer Installation ... 33

4. CONFIGURATION... 34

CPU Configuration .. 34
General Parameters .. 34
External Event Configuration ... 43
SOE Configuration .. 45
Time Synchronization .. 48

Serial Interfaces Configuration ... 50
COM 1 (NX3010/NX3020/NX3030) ... 50
COM1 (NX3004/NX3005) and COM 2 (NX3010/NX3020/NX3030) .. 53

Ethernet Interfaces Configuration .. 54
Local Ethernet Interfaces ... 54
Remote Ethernet Interfaces .. 55
Reserved TCP Ports ... 55

NX5000 Module Configuration ... 55
Protocols Configuration... 57

Protocol Behavior x CPU State .. 60
MODBUS RTU MASTER... 60
MODBUS RTU SLAVE .. 73
MODBUS Ethernet .. 81
OPC DA .. 104
EtherCAT .. 116
EtherNet/IP .. 134

Communication Performance ... 137
Communication Rate of a MODBUS Server Device ... 137
Communication Rate of a Device with OPC Server .. 139
MODBUS Client Relation Start in Acyclic Form ... 139

System Performance .. 139
I/O Scan Time ... 140
Memory Card .. 140

RTC Clock ... 141
Function Blocks for RTC Reading and Writing .. 141
RTC Data Structures .. 146

User Files Memory ... 148
Memory Card .. 150

MasterTool Access .. 152
CPU’s Informative and Configuration Menu ... 153
Function Blocks and Functions ... 155

Special Function Blocks for Serial Interfaces ... 155
Inputs and Outputs Update ... 171
PID Function Block ... 174
Timer Retain .. 177
Non-Redundant Timer ... 180
User Log .. 182

SNMP ... 185
Introduction ... 185
SNMP in Nexto CPUs ... 185
Private MIB ... 187

Summary

 iv

Configuration... 189
User and SNMP Communities ... 190

User Management and Access Rights ... 191

5. INITIAL PROGRAMMING ... 192

Memory Organization and Access .. 192
Project Profiles... 194

Single .. 195
Basic ... 195
Normal .. 195
Expert .. 196
Custom .. 197
Machine Profile ... 197
General Table .. 198
Maximum Number of Tasks... 198

CPU Configuration .. 200
Libraries ... 201
Inserting a Protocol Instance ... 201

MODBUS RTU ... 202
MODBUS Ethernet .. 203

Finding the Network .. 205
Login .. 207
Run Mode... 208
Stop Mode .. 210
Writing and Forcing Variables ... 210
Logout .. 211
Project Upload ... 211
CPU Operating States .. 213

Run .. 213
Stop ... 213
Breakpoint ... 213
Exception .. 213
Reset Warm ... 213
Reset Cold ... 213
Reset Origin... 213

6. REDUNDANCY WITH NX3030 CPU .. 214

Introduction ... 214
Technical Description and Configuration ... 216

Minimum Configuration of a Redundant CPU (Not Using PX2612 Panel) ... 216
Typical Configurations of a Redundant CPU .. 216
NX4010 Module .. 217
Redundancy Control Panel PX2612 ... 218
Interconnections between Half-Clusters and the Redundancy Control Panel PX2612 220
General Features .. 221
Purchase Data .. 223

Principles of Operation .. 224
NX3030 CPU Identification ... 224
Single Redundant Project ... 224
Redundant Project Structure ... 224
Multiple Mapping .. 229
Diagnostics, Commands and User Data Structure ... 230
Cyclic Synchronization Services through NETA and NETB ... 231
Sporadic Synchronization Services through NETA and NETB ... 232

Summary

 v

Project Synchronization Disabling ... 233
PROFIBUS Network Configuration ... 234
Redundant Ethernet Networks with NIC Teaming .. 235
IP Change Methods .. 235
NIC Teaming and Active IP Combined Use ... 239
Ethernet Interfaces Use with Vital Fault Indication... 239
OPC Communication Use with Redundant Projects.. 240
Redundant CPU States ... 240
PX2612 Redundancy Command Panel Functions ... 242
Transition between Redundancy States .. 244
First Instants in Active State .. 247
Common Failures which Cause Automatic Switchovers between Half-Clusters 247
Failures Associated to Switchovers between Half-Clusters Managed by the User 248
Fault Tolerance .. 249
Redundancy Overhead ... 251

Redundant CPU Programming ... 251
Wizard for a New Redundant Project Creation ... 251
Half-Clusters Configuration ... 256
Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2) .. 256
NX5001 Modules Configuration .. 258
NX5000 Modules Configuration .. 260
NX4010 Redundancy Configuration .. 261
I/O Drivers Configuration .. 262
MainTask Configuration .. 262
Redundancy Configuration Object ... 264
GVL Diagnostics ... 264
GVLs with Redundant Symbolic Variables .. 264
POUs from the Program Type with Redundant Symbolic Variables.. 265
Breakpoints Utilization in Redundant Systems ... 265
MODBUS Instances Managing in Redundant System .. 265
Limitations on a Redundant PLC Programming.. 265
Getting the Redundancy State of a Half-Cluster ... 266
Reading Non-Redundant Diagnostics ... 266

Redundant CPU Program Downloading ... 267
Initial Downloading of a Redundant Project ... 267
MasterTool Connection with a NX3030 CPU from a Redundant PLC .. 270
Modification Download in a Redundant Project ... 270
Off-Line and On-Line Modifications Download ... 271
On-Line Download of Modifications .. 272
Off-Line Download of Modifications with Process Control Interruption ... 272
Previous Planning for Off-Line Modifications without Process Control Interruption 273
Exploring the Redundancy for Off-Line downloading of Modifications without Interruption of the

Process control... 278
Maintenance ... 282

Modules Hot Swapping in a Redundant PLC .. 282
MasterTool Warning Messages .. 282
Redundancy Diagnostics on the NX3030 CPU Graphic Display ... 283
Redundancy Diagnostics Structure ... 283
PX2612 Panel Test .. 294

7. MAINTENANCE ... 297

Module Diagnostics .. 297
One Touch Diag... 297
Diagnostics via LED .. 300
Diagnostics via WEB ... 301

Summary

 vi

Diagnostic Explorer ... 303
Diagnostics via Variables ... 304
Diagnostics via Function Blocks .. 318

Graphic Display ... 320
System Log ... 322
Not Loading the Application at Startup .. 322
Power Supply Failure .. 322
Common Problems .. 323
Troubleshooting ... 323
Preventive Maintenance .. 324

8. GLOSSARY ... 325

9. ANNEX A. DNP3 INTEROPERABILITY ... 329

DNP3 Device Profile .. 329
DNP3 .. 329

DEVICE PROFILE DOCUMENT ... 329
DNP V3.0 Implementation Table .. 330

1. Introduction

 1

1. Introduction

Nexto Series CPUs were designed to fulfill several customers’ demands in a variety of applications

present on industrial automation and process control. Due to its compact and rugged body, excellent
performance and fast I/Os update time provided by a unique high-speed communication bus, Nexto

Series CPUs are the best choice for the most demanding control applications. In complex

applications, where reliability, availability and remote I/O operation is required, Nexto Series CPUs

are also a great choice due to its different redundant topologies and bus expansion possibilities.

Nexto Series CPUs provide innovative and unique enhanced diagnostics services. They take the user

to a whole new diagnostics experience. By using a switch located on top of the module and a built-in

compact graphical LCD display, the user has direct access to extensive information regarding I/Os,
fieldbus interfaces and many other modules on the application. In addition, it has user register system

services and ease at debbuging and tasks management, reducing the application cost and installation

time.

Finally, Nexto Series CPUs feature several communication interfaces such as serial and Ethernet
ports, a memory card interface and full IEC 61131-3 programming languages.

Figure 1-1. CPU NX3030

1. Introduction

 2

Nexto Series

Nexto Series is a powerful and complete series of Programmable Controllers (PLC) with exclusive

and innovative characteristics. Due to its flexibility, functional design, advanced diagnostic resources

and modular architecture, the Nexto PLC can be used to control systems in small, medium and large
scale applications.

Nexto Series architecture has a great variety of input and output modules. These modules combined

with a powerful 32 bits processor and a high speed bus based on Ethernet, fit to several application

kinds as high speed control for small machines, complex distributed processes, redundant
applications and systems with a great number of I/O as building automation. Furthermore, Nexto

Series has modules for motion control, communication modules encompassing the most popular field

networks among other features.

Nexto Series uses an advanced technology in its bus, which is based on a high speed Ethernet

interface, allowing input and output information and data to be shared between several controllers

inside the same system. The system can be easily divided and distributed throughout the whole field,
allowing the use of bus expansion with the same performance of a local module, turning possible the

use of every module in the local frame or in the expansion frames with no restrictions. For

interconnection between frames expansions a simple standard Ethernet cable is used.

Figure 1-2. Nexto Series –Overview

1. Introduction

 3

Innovative Features

Nexto Series brings to the user several innovations in utilization, supervision and system

maintenance. These features were developed focusing a new experience in industrial automation. The
list below shows some new features that users will find in the Nexto Series.

Battery Free Operation: Nexto Series does not require any kind of battery for

memory maintenance and real time clock operation. This feature is extremely
important because it reduces the system maintenance needs and allows the use

in remote locations where maintenance can be difficult to be performed.

Besides, this feature is environmentally friendly.

Multiple Block Storage: Several kinds of memories are available to the user in
Nexto Series CPUs, offering the best option for any user needs. These memories

are divided in volatile memories and non-volatile memories. For volatile memories,

Nexto Series CPUs offer addressable input (%I), addressable output (%Q),
addressable memory (%M), data memory and redundant data memory. For

applications that require non-volatile functionality, Nexto Series CPUs bring retain

addressable memory (%Q), retain data memory, persistent addressable memory

(%Q), persistent data memory, program memory, source code memory, CPU file
system (doc, PDF, data) and memory card interface.

One Touch Diag: One Touch Diag is an exclusive feature that Nexto Series

brings to PLCs. With this new concept, the user can check diagnostic
information of any module present in the system directly on CPU’s graphic

display with one single press in the diagnostic switch of the respective

module. OTD is a powerful diagnostic tool that can be used offline (without
supervisor or programmer), reducing maintenance and commissioning times.

OFD – On Board Full Documentation: Nexto Series CPUs are capable of storing the complete

project documentation in its own memory. This feature can be very convenient for backup purposes

and maintenance, since the complete information is stored in a single and reliable place.

ETD – Electronic Tag on Display: Another exclusive feature that Nexto Series brings to PLCs is

the Electronic Tag on Display. This new functionality brings the process of checking the tag names

of any I/O pin or module used in the system directly to the CPU’s graphic display. Along with this
information, the user can check the description, as well. This feature is extremely useful during

maintenance and troubleshooting procedures.

DHW – Double Hardware Width: Nexto Series modules were designed to save space in user
cabinets or machines. For this reason, Nexto Series delivers two different module widths: Double

Width (two backplane rack slots are required) and Single Width (only one backplane rack slot is

required). This concept allows the use of compact I/O modules with a high-density of I/O points

along with complex modules, such as CPUs, fieldbus masters and power supply modules.

High-speed CPU: All Nexto Series CPUs were designed to provide an outstanding performance to

the user, allowing the coverage of a large range of applications requirements. For example: Nexto

CPUs NX3010, NX3020 and NX3030 can execute a sum, multiplication and subtraction instruction
in less than 15 ns for integer type values and in less than 23 ns for real type values. Nexto CPUs are

able to perform 1,000 PID loops in less than 5 ms.

iF Product Design Award 2012: Nexto Series was the winner of iF Product

Design Award 2012 in industry + skilled trades group. This award is recognized
internationally as a seal of quality and excellence, considered the Oscars of the

design in Europe.

1. Introduction

 4

Documents Related to this Manual

In order to obtain additional information regarding the Nexto Series, other documents (manuals and

technical features) besides this one, may be accessed. These documents are available in its last

version on the site http://www.altus.com.br/site_en/.

Each product has a document designed by Technical Features (CE), where the product features are

described. Furthermore, the product may have Utilization Manuals (the manuals codes are listed in

the CE).

For instance, the NX1001 module has the information for utilization features and purchasing on its
CE. On another hand, the NX5001 has, besides the CE, a User Manual (MU).

It is advised the following documents as additional information source:

Code Description Language

CE114000 Nexto Series – Technical Characteristics English

CT114000 Série Nexto – Características Técnicas Portuguese

CS114000 Serie Nexto – Especificaciones y Configuraciones Spanish

CE114700 Nexto Series Backplane Racks Technical Characteristics English

CT114700 Características Técnicas dos Bastidores da Série Nexto Portuguese

CS114700 Características Técnicas de los Bastidores de la Serie
Nexto

Spanish

CE114900 NX4010 Redundancy Link Module Technical

Characteristics

English

CT114900 Características Técnicas do Módulo de Redundância

NX4010

Portuguese

CS114900 Características Técnicas del Módulo de Redundancia

NX4010

Spanish

CE114902 NX5001 PROFIBUS-DP Master Technical Characteristics English

CT114902 Características Técnicas do Mestre PROFIBUS DP

NX5001

Portuguese

CS114902 Especificaciones y Configuraciones Maestro PROFIBUS-

DP NX5001

Spanish

CE114903 Ethernet Module NX5000 Technical Characteristics English

CT114903 Características Técnicas do Módulo Ethernet NX5000 Portuguese

CS114903 Especificaciones y Configuraciones Modulo Ethernet

NX5000

Spanish

CT112500 Características Técnicas do Painel de Controle de
Redundância PX2612

Portuguese

MU214600 Nexto Series User Manual English

MU214000 Manual de Utilização Série Nexto Portuguese

MU214300 Manual del Usuario Serie Nexto Spanish

MU214605 Nexto Series CPUs User Manual English

MU214100 Manual de Utilização CPUs Série Nexto Portuguese

MU214305 Manual del Usuario CPUs Serie Nexto Spanish

MU299609 MasterTool IEC XE User Manual English

MU299048 Manual de Utilização MasterTool IEC XE Portuguese

MU299800 Manual del Usuario MasterTool IEC XE Spanish

MP399609 MasterTool IEC XE Programming Manual English

MP399048 Manual de Programação MasterTool IEC XE Portuguese

MP399800 Manual de Programación MasterTool IEC XE Spanish

MU214601 NX5001 PROFIBUS DP Master User Manual English

MU214001 Manual de Utilização Mestre PROFIBUS DP NX5001 Portuguese

MU214301 Manual del Usuario Maestro PROFIBUS DP NX5001 Spanish

MU219000 Ponto Series Utilization Manual English

MU209000 Manual de Utilização da Série Ponto Portuguese

MU209508 Manual de Utilização Cabeça PROFIBUS PO5063V1 e

Cabeça Redundante PROFIBUS PO5063V5

Portuguese

MU219511 PO5064 PROFIBUS Head and PO5065 Redundant

PROFIBUS Head Utilization Manual

English

http://www.altus.com.br/
http://www.altus.com.br/

1. Introduction

 5

MU209511 Manual de Utilização Cabeça PROFIBUS PO5064 e

Cabeça Redundante PROFIBUS PO5065

Portuguese

MU209020 Manual de Utilização Rede HART sobre PROFIBUS Portuguese

Table 1-1. Related Documents

Visual Inspection

Before resuming the installation process, it is advised to carefully visually inspect the equipments,

verifying the existence of transport damage. Verify if all parts requested are in perfect shape. In case

of damages, inform the transport company or Altus distributor closest to you.

CAUTION:
Before taking the modules off the case, it is important to discharge any possible static energy
accumulated in the body. For that, touch (with bare hands) on any metallic grounded surface
before handling the modules. Such procedure guaranties that the module static energy limits
are not exceeded.

It’s important to register each received equipment serial number, as well as software revisions, in
case they exist. This information is necessary, in case the Altus Technical Support is contacted.

Technical Support

For Altus Technical Support contact in São Leopoldo, RS, call +55 51 3589-9500. For further

information regarding the Altus Technical Support existent on other places, see

http://www.altus.com.br/site_en/ or send an email to altus@altus.com.br.

If the equipment is already installed, you must have the following information at the moment of

support requesting:

 The model of the used equipments and the installed system configuration

 The CPU serial number

 The equipment revision and the executive software version, written on the tag fixed on the

product side

 CPU operation mode information, acquired through MasterTool IEC XE

 The application software content, acquired through MasterTool IEC XE

 Used program version

Warning Messages Used in this Manual

In this manual, the warning messages will be presented in the following formats and meanings:

DANGER:
Reports potential hazard that, if not detected, may be harmful to people, materials,
environment and production.

CAUTION:
Reports configuration, application or installation details that must be taken into consideration
to avoid any instance that may cause system failure and consequent impact.

ATTENTION:

Identifies configuration, application and installation details aimed at achieving maximum operational

performance of the system.

http://www.altus.com.br/
mailto:altus@altus.com.br

2. Technical Description

 6

2. Technical Description

This chapter presents all technical features from Nexto Series CPUs NX3004, NX3005, NX3010,

NX3020 and NX3030.

Panels and Connections

The following figure shows the CPU NX3030 front panel.

Figure 2-1. CPU NX3030

As it can be seen on the figure, on the front panel upper part is placed the graphic display used to

show the whole system status and diagnostics, including the specific diagnostics of each module. The

graphic display also offers an easy-to-use menu which brings to the user a quick mode for parameters
reading or defining, such as: inner temperature (reading only) and local time (reading only).

Just below the graphic display, there are 2 LEDs used to indicate alarm diagnostics and watchdog

circuit. The Table 2-1 shows the LEDs description. For further information regarding the LEDs status
and meaning, see Diagnostics via LED chapter.

LED Description

DG Diagnostics LED

WD Watchdog LED

Table 2-1. LEDs Description

Nexto Series CPUs has two switches available to the user. Table 2-2 shows the description of these
switches. For further information regarding the diagnostics switch, see chapters One Touch Diag and

2. Technical Description

 7

CPU’s Informative and Configuration Menu. For further information regarding the MS switch, see

Configuration - Memory Card.

Keys Description

Diagnostics

Switch

Switch placed on the module upper part. Used for diagnostics visualization on

the graphic display or for navigation through the informative menu and CPU
configuration.

MS Switch placed on the frontal panel. Used to securely remove the memory card.

Table 2-2. Keys Description

On the frontal panel the connection interfaces of Nexto Series CPUs are available. These interfaces

are: Ethernet communication, serial communication and memory card interface. Table 2-3 presents a
brief description of these interfaces.

Interfaces
Available on

Models
Description

NET 1

NX3004

NX3005

NX3010

NX3020

NX3030

RJ45 communication connector standard 10/100Base-TX.
Allows the point to point or network communication through

open protocols MODBUS TCP client and server. MODBUS
RTU via TCP client and server.

For further utilization information, see Ethernet Interfaces

Configuration section.

NET 2
NX3020

NX3030

RJ45 communication connector pattern 10/100Base-TX.
Allows the point to point or network communication through

open protocols MODBUS TCP client and server. MODBUS
RTU via TCP client and server.

For further utilization information, see Ethernet Interfaces

Configuration section.

COM 1

NX3010

NX3020

NX3030

DB9 female connector for RS-232 pattern communication.

Allows the point to point or network communication through
open protocols MODBUS RTU slave or MODBUS RTU

master. For further utilization information, see Serial
Interfaces Configuration section.

COM1
NX3004

NX3005
DB9 female connector for RS-485 and RS-422 standard.

Allows point-to-point or network communication through
open protocols, MODBUS RTU slave or MODBUS RTU
master. For further utilization information, see Serial

Interfaces Configuration section.
COM 2

NX3010

NX3020

NX3030

Power Supply
NX3004

NX3005

6-terminal connector with fixing. It powers Nexto series
modules connected at the same bus, providing 15 W of

power.

MEMORY SLOT

NX3010

NX3020

NX3030

Memory card slot. Allows the use of a memory card for

different types of data storage such as: user logs, Web
pages, project documentation and files.

For further utilization information, see Configuration-Memory
Card section.

Table 2-3. Connection Interfaces

2. Technical Description

 8

General Features

Common General Features

 NX3004, NX3005, NX3010, NX3020, NX3030

Backplane rack occupation 2 sequential slots

Programming languages

Instruction List (IL)

Structured Text (ST)
Ladder Diagram (LD)

Sequential Function Chart (SFC)
Function Block Diagram (FBD)
Continuous Function Chart (CFC)

Tasks

Cyclic (periodic)

Event (software event)
External (hardware event)
Freewheeling (continuous)

Status (software event)

Online changes Yes

Hot swap support Yes

Bus expansion redundancy support Yes

Serial interfaces
NX3004/NX3005 – COM 1: 1 x RS-485 / RS-422

NX3010/NX3020/NX3030 – COM 1: 1 x RS-232C
NX3010/NX3020/NX3030 – COM 2: 1 x RS-485 / RS-422

MODBUS Protocol
RTU (COM 1 and COM 2) master and slave
TCP (NET 1 and NET 2) client and server

RTU via TCP (NET1 and NET2) client and server

OPC protocol Yes

EtherCAT protocol Yes, NX3020 and NX3030

SNMP Protocol Yes, v1, v2c and v3 versions

Real time clock (RTC)
Yes

Resolution of 1 ms and maximum variance of 2 s per day

Watchdog Yes

Status and diagnostic indication
Graphic display, LEDs, web pages and CPU’s internal

memory

One Touch Diag (OTD) Yes

Electronic Tag on Display (ETD) Yes

Isolation

 Logic to protective earth 1250 Vac / 1 minute

 Logic to Ethernet interfaces 1500 Vac / 1 minute

 Logic to serial port (COM 2) 1000 Vac / 1 minute

 Logic to serial port NX3004/NX3005

(COM 1)

1000 Vac / 1 minute

 Ethernet interfaces to protective

earth

1250 Vac / 1 minute

 Ethernet interfaces to serial port

(COM 2)

1500 Vac / 1 minute

 Ethernet interfaces to serial port on

the NX3004/NX3005 (COM 1)

1500 Vac/ 1 minute

 Ethernet interface to Ethernet
interface

1500 Vac / 1 minute

 Serial port (COM 2) to protective

earth

1250 Vac / 1 minute

 Serial port N3004/NX3005 (COM 1)

to protective earth

1000 Vac / 1 minute

Operating temperature 0 to 60 °C

Storage temperature -25 to 75 °C

Relative humidity 5 to 96 %, non-condensing

Conformal coating Yes

IP Level IP 20

2. Technical Description

 9

Standards

IEC 61131-2

IEC 61131-3
CE, Electromagnetic Compatibility (EMC) and Low-Voltage

Directive (LVD).

Module dimensions (W x H x D) 36.00 x 114.63 x 115.30 mm

Package dimensions (W x H x D) 44.00 x 122.00 x 147.00 mm

Weight 350 g

Weight with package 400 g

Table 2-4. Common Features

Notes:

Tasks: Task is an object used to call POUs. A Task can be triggered by period, events or can run in

freewheeling mode. Each task can call one or more POUs.

Real Time Clock (RTC): The retention time, time that the real time clock will continue to update

the date and time after a CPU power down, is 15 days for operation at 25 ºC. At the maximum

product temperature, the retention time is reduced to 10 days.

Isolation: The term logic is used to refer to the internal circuits such as processor, memory and bus

interfaces.

Conformal coating: The covering of electronic circuits protects internal parts of the product against

moisture, dust and other harsh elements to electronic circuits.

Specific Features

 NX3004 NX3005 NX3010 NX3020 NX3030

Addressable input variables memory (%I) 32 Kbytes 32 Kbytes 32 Kbytes 64 Kbytes 96 Kbytes

Addressable output variables memory (%Q) 32 Kbytes 32 Kbytes 32 Kbytes 64 Kbytes 96 Kbytes

Addressable variables memory (%M) 16 Kbytes 16 Kbytes 16 Kbytes 32 Kbytes 64 Kbytes

Symbolic variables memory 2 Mbytes 3 Mbytes 4 Mbytes 5 Mbytes 6 Mbytes

Maximum amount of memory configurable as

retentive or persistent
7.5 Kbytes 7,5 Kbytes 64 Kbytes 112 Kbytes 112 Kbytes

Total redundant data memory - - - - 736 Kbytes

 Addressable input variables memory (%I) - - - - 80 Kbytes

 Addressable output variables memory (%Q) - - - - 80 Kbytes

 Addressable variables memory (%M) - - - - 64 Kbytes

 Symbolic variables memory - - - - 512 Kbytes

Program memory 3 Mbytes 3 Mbytes 4 Mbytes 6 Mbytes 8 Mbytes

Source code memory (backup) 32 Mbytes 40 Mbytes 40 Mbytes 80 Mbytes 120 Mbytes

User files memory 16 Mbytes 16 Mbytes 16 Mbytes 32 Mbytes 32 Mbytes

Maximum number of tasks 16 16 16 24 32

Maximum number of expansion bus 1 4 8 24 24

Maximum number of I/O modules on the bus 32 64 128 128 128

Ethernet TCP/IP local interface 1 1 1 2 2

Maximum number of additional Ethernet TCP/IP

interface modules
0 1 0 2 6

Ethernet TCP/IP interface redundancy support No No No Yes Yes

Maximum number of PROFIBUS-DP network
(using master modules PROFIBUS-DP)

1 1 1 4 4

PROFIBUS-DP network redundancy support No No No Yes Yes

2. Technical Description

 10

Redundancy support (half-clusters) No No No No Yes

Event oriented data reporting (SOE) No No No Yes Yes

 Protocol - - - DNP3 DNP3

 Maximum event queue size - - - 1000 1000

Clock synchronization (SNTP) Yes Yes Yes Yes Yes

Web pages development (available trough

the HTTP protocol)
No Yes No No No

Integrated power supply Yes Yes No No No

Current consumption from backplane rack power
supply

 - 800 mA 1000 mA 1000 mA

Power dissipation 4 W 4 W 4 W 5 W 5 W

Table 2-5. Specific Features

Notes:

Addressable input variables memory (%I): Area where the addressable input variables are stored.

Addressable variables means that the variables can be accessed directly using the desired address.
For instance: %IB0, %IW100. Addressable input variables can be used for mapping digital or analog

input points. As reference, 8 digital inputs can be represented per byte and one analog input point can

be represented per two bytes.

Total addressable output variables memory (%Q): Area where the addressable output variables
are stored. Addressable variables means that the variables can be accessed directly using the desired

address. For instance: %QB0, %QW100. Addressable output variables can be used for mapping

digital or analog output points. As reference, 8 digital outputs can be represented per byte and one
analog output point can be represented per two bytes.

The addressable output variables can be configured as retain, persistent or redundant variables, but

the total size is not modified due to configuration.

The Nexto Series NX3030 CPU allows defining an area of redundant variables inserted inside of the
addressable output variables %Q. The subset of addressable output variables memories are part of the

total size of available memory.

Addressable variables memory (%M): Area where the addressable marker variables are stored.
Addressable variables means that the variables can be accessed directly using the desired address.

For instance: %MB0, %MW100.

Symbolic variables memory: Area where the symbolic variables are stored. Symbolic variables are
IEC variables created in POUs and GVLs during application development, not addressed directly in

memory. Symbolic variables can be defined as retain or persistent. In these cases, it will be used the

memory area of retain symbolic variables memory or persistent symbolic variables memory

respectively.

Persistent and Retain symbolic variables memory: Area where are allocated the retentive

symbolic variables. The retentive data keep its respective values even after a CPU’s cycle of power

down and power up. The persistent data keep its respective values even after the download of a new
application in the CPU.

ATTENTION:

The declaration and use of symbolic persistent variables should be performed exclusively through

the Persistent Vars object, which may be included in the project through the tree view in Application
-> Add Object -> Persistent Variables. It should not be used to VAR PERSISTENT expression in

the declaration of field variables of POUs.

The full list of when the symbolic persistent variables keep their values and when the value is lost

can be found in the Table 2-6. Besides the persistent area size declared in the Table 2-5, are reserved
these 44 bytes to store information about the persistent variables (not available for use).

2. Technical Description

 11

The Table 2-6 shows the behavior of retentive and persistent variables for different situations in

which “-“ means the value is lost and “X” means the value is kept.

Command Symbolic variable Retain variable Persistent variable

Reset warm/Power-on/off cycle - X X

Reset cold - - X

Reset origin - - -

Remove CPU or Power Supply

from the rack while energized.
- - -

Download - - X

Online change X X X

Reboot PLC - X X

Clean All - - X

Table 2-6. Post-command Variable Behavior

In versions 1.5.0.21 and lower for NX3004 and 1.5.1.0 for NX3010, NX3020 and NX3030, the

retentive and persistent symbolic memories and addressable output variables memory (%Q) used to
have a fixed maximum size. On Table 2-7, it’s possible to consult the maximum sizes allowed in

these older versions.

In versions above the ones mentioned, the CPUs allow flexible retentive and persistent memory sizes.
For further information, refer to the section Retain and Persistent Memory Areas.

 NX3004 NX3010 NX3020 NX3030

Retentive addressable output variables

memory (%Q)
2 Kbytes 8 Kbytes 16 Kbytes 16 Kbytes

Persistent addressable output variables
memory (%Q)

2 Kbytes 8 Kbytes 16 Kbytes 48 Kbytes

Retentive symbolic variables memory 2 Kbytes 32 Kbytes 48 Kbytes 32 Kbytes

Persistent symbolic variables memory 1,5 Kbytes 16 Kbytes 32 Kbytes 16 Kbytes

Table 2-7. Retentive and Persistent memories in older versions

In the case of Clean All command, if the application has been modified so that persistent variables

have been removed, inserted into the top of the list or otherwise have had its modified type, the value

of these variables is lost (when prompted by the tool MasterTool to download). Thus it is
recommended that changes to the persistent variables GVL only include adding new variables on the

list.

Total redundant data memory: Redundant data memory is the maximum memory area that can be

used as redundant memory between two redundant CPUs. This value is not a different memory, note
that the sum of all redundant variables (addressable input variable, addressable output variable,

addressable variable, symbolic variable, retain symbolic variable, persistent symbolic variable) must

be less than or equal to the available redundant data memory.

Program memory: Program memory is the maximum size that can be used to store the user

application. This area is shared with source code memory, being the total area the sum of “program

memory” and “source code memory”.

Source code memory (backup): This memory area is used as project backup. If the user wants to

import the project, MasterTool IEC XE will get the information required in this area. Care must be

taken to ensure that the project saved as a backup is up to date to avoid the loss of critical

information. This area is shared with source code memory, being the total area the sum of “program
memory” and “source code memory”.

User files memory: This memory area offers another way for the user to store files such as doc, pdf,

images, and other files. This function allows data recording as in a memory card. For further
information check User Files MemoryUser Files Memory.

2. Technical Description

 12

Maximum number of tasks: The maximum number of tasks defined for each CPU model, and

among different project profiles, is better detailed in the chapter Maximum Number of Tasks.

Redundancy support (half-clusters): The software version 1.1.0.0 or onwards/product revision AB
or onwards supports redundancy of NX3030 CPUs.

Event oriented data reporting (SOE): The data types are found in the DNP3 Device Profile.

Maximum number of PROFIBUS-DP network: From MasterTool IEC XE version 1.22 and
onwards, 4 PROFIBUS-DP networks are supported for NX3020 and NX3030 CPUs. Previous

versions support 2 PROFIBUS-DP networks. The limit of PROFIBUS-DP masters is 4, which means

that only 2 redundant networks can be used.

Serial Interfaces

COM 1(NX3010/NX3020/NX3030)

 NX3010, NX3020, NX3030

Connector Shielded female DB9

Physical interface RS-232C

Modem signals RTS, CTS, DCD

Baud rate 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,

57600, 115200 bps

Protocols Master/ Slave MODBUS RTU

Open protocol

Table 2-8. COM 1 Serial Interface Features

COM 1 (NX3004/NX3005) and COM 2 (NX3010/NX3020/NX3030)

 NX3004, NX3005, NX3010, NX3020, NX3030

Connector Shielded female DB9

Physical interface RS-422 or RS-485 (depends on the cable choice)

Communication direction RS-422: full duplex

RS-485: half duplex

RS-422 maximum transceivers 11 (1 transmitter and 10 receivers)

RS-485 maximum transceivers 32

Termination Yes (optional via cable selection)

Baud rate 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400,
57600, 115200

Protocols Master/ Slave MODBUS RTU

Open protocol

Table 2-9. COM 2 Serial Interface Features

Notes:

Physical Interface: Depending on configuration of the used cable it is possible to choose the kind of
physical interface: RS-422C or RS-485. The list of cables can be found at Related Products section.

RS-422 Maximum Transceivers: It is the maximum number of transceivers that can be used on a

same bus.

RS-485 Maximum Transceivers: It is the maximum number of transceivers that can be used on a

same bus.

2. Technical Description

 13

Ethernet Interfaces

NET 1

 NX3004, NX3005, NX3010, NX3020, NX3030

Connector Shielded female RJ45

Auto crossover Yes

Maximum cable length 100 m

Cable type UTP or ScTP, category 5

Baud rate 10/100 Mbps

Physical layer 10/100BASE-TX

Data link layer LLC (logical link control)

Network layer IP (internet protocol)

Transport layer TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol)

Application layer

Client/ Server MODBUS TCP

Client/ Server MODBUS RTU via TCP
HTTP (Web server)
MasterTool IEC XE programming protocol

DNP3 (event oriented data reporting)
SNTP (Clock synchronism)
EtherCAT

OPC
SNMP (Ethernet Network Management)
Ethernet/IP Scanner/Adapter

Diagnostics LEDs - green (speed), yellow (link/activity)

Table 2-10. Ethernet NET 1 Interface Features

Note:

Application Layer: The DNP3 and EtherCAT protocols are not available for CPUs NX3004,

NX3005 and NX3010.

NET 2

 NX3020, NX3030

Connector Shielded female RJ45

Auto crossover Yes

Maximum cable length 100 m

Cable type UTP or ScTP, category 5

Baud rate 10/100 Mbps

Physical layer 10/100BASE-TX

Data link layer LLC (logical link control)

Network layer IP (internet protocol)

Transport layer
TCP (Transmission Control Protocol) and UDP (User Datagram

Protocol)

Application layer

Client/ Server MODBUS TCP

Client/ Server MODBUS RTU via TCP
HTTP (Web server)

MasterTool IEC XE programming protocol
DNP3 (event oriented data reporting)
SNTP (clock synchronism)

EtherCAT
OPC
SNMP (Ethernet Network Management)

Ethernet/IP Scanner/Adapter

Diagnostics LEDs - green (speed), yellow (link/activity)

Table 2-11. Ethernet NET 2 Interface Features

2. Technical Description

 14

Power Supply

 NX3004, NX3005

Nominal input voltage 24 Vdc

Maximum output power 15 W

Maximum output current 3 A

Input voltage 19.2 to 30 Vdc

Maximum input current (inrush) 30 A

Maximum input current 1.4 A

Maximum input voltage interrupt

time
10 ms @ 24 Vdc

Isolation

 Input to output 1000 Vac / 1 minute

 Input to protective earth 1500 Vac / 1 minute

 Input do functional earth 1000 Vac / 1 minute

Wire size 0.5 mm²

Polarity inversion protection Yes

Internal auto recovery fuse Yes

Output short-circuit protection Yes

Overcurrent protection Yes

Table 2-12. Power Supply Features

Note:

Maximum output power: Using modules I/O NextoJet, it is possible to extend and come using 20

W of power output. See Application Note NAP152 to meet the restrictions to use this limit.Memory

Card Interface

The memory card can be used for different data to be stored such as user logs, web pages, project
documentation and source files. More information about how to use the memory card interface can

be found Memory Card section.

 NX3010, NX3020, NX3030

Maximum Capacity 8 Gbytes

Minimum Capacity 2 Gbytes

Type miniSD

File System FAT32

Remove card safely Yes, by pressing MS switch

Table 2-13. Memory Card Interface Features

Notes:

Maximum Capacity: The memory card capacity must be less than or equal to this limit for correct

operation on Nexto CPU, otherwise the Nexto CPU may not detect the memory card or even present
problems during data transfer.

Minimum Capacity: The memory card capacity must be greater than or equal to this limit for

correct operation on Nexto CPU, otherwise the Nexto CPU may not detect the memory card or even

present problems during data transfer.

File System: It is recommended to format the memory card using the Nexto CPU, otherwise it may

result in performance loss in the memory card interface.

2. Technical Description

 15

Compatibility with Other Products

There are some incompatibilities between the Nexto Series CPUs and the MasterTool IEC XE. See

the following table to find out which version of MasterTool IEC XE should be used.

Nexto Series CPU Software Version
MasterTool IEC XE compatible version

NX3004 NX3005 NX3010, NX3020, NX3030

- - 1.2.0.9 or lower 1.00 to 1.28

- - 1.2.1.0 to 1.2.4.0 1.29 to 1.40

- - 1.3.0.20 1.40 to 1.41

- - 1.4.0.33 2.00

1.5.0.18 - 1.5.0.10 to 1.5.0.16 2.01 to 2.02

1.5.1.2 - 1.5.1.3 2.03 to 2.06

1.6.0.0 1.6.0.0 1.6.0.0 2.07 or above

Table 2-14. Compatibility with other products

Note:

Compatibility between versions: some features are available only from a particular version. To

further information, see the Manual MasterTool IEC XE – MU299609 to verify the availability of
some characteristic in a specific product version.

Performance

The Nexto Series CPU performance relies on:

 User Application Time

 Application Interval

 Operational System Time

 Module quantity (process data, input/output, among others)

Application Times

The execution time of Nexto CPUs application depends on the following variables:

 Input read time (local and remote)

 Tasks execution time

 Output write time (local and remote)

It is important to stress that the execution time of the “Main Task” will be directly influenced by the

“Configuration” system task, a task of high priority, executed periodically by the system. The
“Configuration” task may interrupt the “Main Task” and, when using the communication modules, as

the Ethernet NX5000 module, for instance, the time addition to the “Main Task” may be up to 25%

of the execution average time.

2. Technical Description

 16

Time for Instructions Execution

Table 2-15 presents the necessary execution time for different instructions in Nexto Series CPUs:

Instruction Language Variables Instruction Times (us)

1000 Contacts LD BOOL 6

1000 Divisions

ST
INT 43

REAL 81

IL
INT 43

REAL 81

LD
INT 43

REAL 81

1000

Multiplications

ST
INT 15

REAL 23

IL
INT 15

REAL 23

LD
INT 15

REAL 23

1000 Sums

ST
INT 15

REAL 23

IL
INT 15

REAL 23

LD
INT 15

REAL 23

Table 2-15. Instruction Times

Initialization Times

Nexto Series CPUs have initialization times of 50 s, and the initial screen with the NEXTO logo

(Splash) is presented after 20 s from the power switched on.

Interval Time

The CPU interval time of every task depends on the application software which can be set from 5 to

750ms.

2. Technical Description

 17

Physical Dimensions

NX3004/NX3005

Dimensions in mm.

Figure 2-2. NX3004 and NX3005 CPU Physical Dimensions

2. Technical Description

 18

NX3010/NX3020/NX3030

Dimensions in mm.

Figure 2-3. NX3010, NX3020 and NX3030 CPU Physical Dimensions

2. Technical Description

 19

Purchase Data

Integrant Items

The product package has the following items:

 NX3004, NX3005, NX3010, NX3020 or NX3030 module

 6-terminal connector with fixing (only NX3004 and NX3005)

 Installation guide

Product Code

The following code should be used to purchase the product:

Code Description

NX3004
CPU, 1 Ethernet port, 1 serial channel, remote rack expansion support and power

supply integrated

NX3005
CPU, 1 Ethernet port, 1 serial channel, remote rack expansion support, power supply
integrated and user web pages support

NX3010 High-speed CPU, 1 Ethernet port, 2 serial channels, memory card interface and

remote rack expansion support

NX3020 High-speed CPU, 2 Ethernet ports, 2 serial channels, memory card interface and

remote rack expansion support

NX3030 High-speed CPU, 2 Ethernet ports, 2 serial channels, memory card interface, remote

rack expansion and redundancy support

Table 2-16. Nexto Series CPUs Models

Related Products

The following products must be purchased separately when necessary:

Code Description

MT8500 MasterTool IEC XE

AL-2600 RS-485 network branch and terminator

AL-2301 RS-485 network cable (up to 1000 meters)

AL-2306 RS-485 network cable (up to 500 meters)

AL-2319 RJ45-RJ45 Cable

AL-1729 RJ45-CMDB9 Cable

AL-1748 CMDB9-CFDB9 Cable

AL-1752 CMDB9-CMDB9 Cable

AL-1753 CMDB9-CMDB25 Cable

AL-1754 CMDB9-CFDB9 Cable

AL-1761 CMDB9- CMDB9 Cable

AL-1762 CMDB9- CMDB9 Cable

AL-1763 CMDB9-Terminal Block Cable

NX9101 8 Gb Memory Card, MicroSD with MiniSD Adapter

NX9202 RJ45-RJ45 2 m Cable

NX9205 RJ45-RJ45 5 m Cable

NX9210 RJ45-RJ45 10 m Cable

Table 2-17. Related Products

Notes:

MT8500: MasterTool IEC XE is available in four different versions: LITE, BASIC,
PROFESSIONAL and ADVANCED. For more details, please check MasterTool IEC XE User

Manual - MU299609.

2. Technical Description

 20

AL-2600: This module is used for branch and termination of RS-422/485 networks. For each

network node, an AL-2600 is required. The AL-2600 that is at the ends of network must be

configured with termination, except when there is a device with active internal termination, the rest
must be configured without termination.

AL-2301: Two shielded twisted pairs cable without connectors, used for networks based on RS-485

interface, with 1000 meters of maximum length.

AL-2306: Two shielded twisted pairs cable without connectors, used for networks based on RS-485

interface, with 500 meters of maximum length.

AL-2319: Two RJ45 connectors for programming the CPUs of the Nexto Series and Ethernet point-

to-point with another device with Ethernet interface communication.

AL-1729: RS-232C standard cable with one RJ45 connector and one DB9 male connector for

communication between CPUs of the Nexto Series and other Altus products of the DUO Series,

Piccolo Series and Ponto Series.

AL-1748: RS-232C standard cable with one DB9 male connector and 1 DB9 female connector for

communication between CPUs of the Nexto Series and Altus products of the Cimrex Series.

AL-1752: RS-232C standard cable with two DB9 male connectors for communication between

CPUs of the Nexto Series and Altus products of the H Series and iX series.

AL-1753: RS-232C standard cable with one DB9 male connector and one DB25 male connector for

communication between CPUs of the Nexto Series and Altus products of the H Series.

AL-1754: RS-232C standard cable with one DB9 male connector and one DB9 female connector for
o communication between CPUs of the Nexto Series and Altus products of the Exter Series or Serial

port, RS-232C standard, of a microcomputer.

AL-1761: RS-232C standard cable with two DB9 male connectors for communication between
Nexto Serie CPUs and Altus products of the AL Series.

AL-1762: RS-232C standard cable with two DB9 male connections for communication between

Nexto Series CPUs.

AL-1763: Cable with one DB9 male connector and terminal block for communication between CPUs
of the Nexto Series and products with RS-485/RS-422 standard terminal block.

NX9202/NX9205/NX9210: Cables used to interconnect the bus expansion modules.

3. Installation

 21

3. Installation

This chapter presents the necessary proceedings for the Nexto Series CPUs physical installation, as

well as the care that should be taken with other installation within the panel where the CPU is been
installed.

Mechanical Installation

NX3004 and NX3005

The CPUs NX3004 and NX3005 must be inserted in the backplane rack position 0. It requires two

sequential positions, this means that it uses postions 0 and 1 of the rack.

NX3010, NX3020 and NX3030

Nexto Series CPUs (NX3010, NX3020 and NX3030) must be inserted in the backplane rack position

2, just beside the Power Supply Module. All information regarding mechanical installation and
module insertion can be found at Nexto Series User Manual – MU214605.

Electrical Installation

DANGER:
When executing any installation in an electric panel, certify that the main energy supply is
OFF.

NX3004 and NX3005

The Figure 3-1 shows the Nexto Series CPUs electric diagram installed in a Nexto Series backplane
rack.

The connectors placement depicted are merely illustrative.

Figure 3-1. NX3004 and NX3005 CPU Electric Diagram

3. Installation

 22

Diagram Notes:

1. Ethernet interface pattern 10/100Base-TX for programming, debugging and MODBUS TCP

network connection or other protocols.
2. Serial interface pattern RS-485/RS-422 for MODBUS RTU network connection or other

protocols. The physical interface choice depends on the cable used.

3. The grounding from the external power source is connected to the terminal . Use 0,5 mm²
cables

4. The power supply is connected to terminal 0 V. Use 0.5 mm ² cables

5. The power supply is connected to terminal 24 V. Use 0.5 mm ² cables

6. The power supply feeds the internal circuit directly
7. Local data bus

8. The module feeds the other modules of the Nexto Series through rack connection

9. The module is grounded through Nexto Series backplane rack

NX3010, NX3020 and NX3030

The NX3010, NX3020 and NX3030 CPUs energy supply come from the Power Supply Module

which supplies the CPUs power through the backplane rack connection. It does not need any external

connection. The module grounding is given through the contact between the module grounding
spring and the backplane rack.

The Figure 3-3 shows the Nexto Series CPUs electric diagram installed in a Nexto Series backplane

rack.

The connectors placement depicted are merely illustrative.

Figure 3-2. NX3010, NX3020, NX3030 CPUs Electric Diagram

Diagram Notes:

10. Memory card interface.

11. Ethernet interface pattern 10/100Base-TX for programming, debugging and MODBUS TCP
network connection or other protocols.

3. Installation

 23

12. Ethernet interface pattern 10/100Base-TX for MODBUS TCP network connection or other

protocols (only for NX3020 and NX3030).

13. Serial interface pattern RS-232C for MODBUS RTU network connection or other protocols.
14. Serial interface pattern RS-485/RS-422 for MODBUS RTU network connection or other

protocols. The physical interface choice depends on the cable used.

15. The module is grounded through Nexto Series backplane rack.
16. The power supply comes from the backplane rack connection. There is no need for external

connections.

Ethernet Network Connection

The NET 1 and NET 2 (only for NX3020 and NX3030) isolated communication interface allows the

connection with an Ethernet network, however, the NET 1 interface is the most suitable to be used
for communication with MasterTool IEC XE.

The Ethernet network connection uses twisted pair cables (10/100Base-TX) and the speed detection

is automatically made by the Nexto CPU. This cable must have one of its endings connected to the
interface that is likely to be used and another one to the HUB, switch, microcomputer or other

Ethernet network point.

IP Address

The NET 1 Ethernet interface is used for Ethernet communication and for CPU configuration which
comes with the following default parameters configuration:

 NET 1

IP Address 192.168.15.1

Subnet Mask 255.255.255.0

Gateway Address 192.168.15.253

Table 3-1. Default Parameters Configuration for Ethernet NET 1 Interface

The IP Address and Subnet Mask parameters can be seen on the CPU graphic display via parameters
menu, as described in Configuration – CPU’s Informative and Configuration Menu chapter.

First, the NET 1 interface must be connected to a PC network with the same subnet mask to

communicate with MasterTool IEC XE, where the network parameters can be modified. For further

information regarding configuration and parameters modifications, see Configuration –Ethernet
Interfaces Configuration chapter.

The NET 2 Ethernet interface, available only in NX3020 and NX3030 CPUs, is used only for

Ethernet communication and comes with the following default parameters configuration:

 NET 2

IP Address 192.168.16.1

Subnet Mask 255.255.255.0

Gateway Address 192.168.16.253

Table 3-2. Default Parameters Configuration for Ethernet NET 2 Interface

The IP Address and Subnet Mask parameters can be seen on the CPU graphic display via parameters

menu, as described in Configuration – CPU’s Informative and Configuration Menu chapter.

The NET 2 interface parameters can be modified via MasterTool IEC XE. For further information

regarding configuration and parameters modifications, see Configuration – Ethernet Interfaces

Configuration chapter.

3. Installation

 24

Gratuitous ARP

The NETx Ethernet interface promptly sends ARP packets type in broadcast informing its IP and

MAC address for all devices connected to the network. These packets are sent during a new
application download by the MasterTool IEC XE software and in the CPU startup when the

application goes into Run mode.

Five ARP commands are triggered within a 200 ms initial interval, doubling the interval every new
triggered command, totalizing 3 s. Example: first trigger occurs at time 0, the second one at 200 ms

and the third one at 600 ms and so on until the fifth trigger at time 3 s.

Network Cable Installation

Nexto Series CPUs Ethernet ports, identified on the panel by NET 1 and NET 2 (NX3020 and
NX3030), have pattern pin outs which are the same used in PCs. The connector type, cable type,

physical level, among other details regarding the CPU and the Ethernet network device are defined in

the Technical Description –Ethernet Interfaces Configuration Figure 3-3 and Table 3-3 present the
RJ-45 Nexto CPU female connector, with the identification and description of the valid pin out for

10Base-T and 100Base-TX physical levels.

Figure 3-3. RJ45 Nexto CPU Female Connector

Pin Signal Description

1 TXD + Data transmission, positive

2 TXD - Data transmission, negative

3 RXD + Data reception, positive

4 NU Not used

5 NU Not used

6 RXD - Data reception, negative

7 NU Not used

8 NU Not used

Table 3-3. RJ45 Nexto CPU Female Connector Pin out

The interface can be connected in a communication network through a hub or switch, or straight from

the communication equipment. In this last case, due to Nexto CPUs Auto Crossover feature, there is

no need for a cross-over network cable, the one used to connect two PCs point to point via Ethernet
port.

It is important to stress that it is understood by network cable a pair of RJ45 male connectors

connected by a UTP or ScTP cable, category 5 whether straight connecting or cross-over. It is used to
communicate two devices through the Ethernet port.

These cables normally have a connection lock which guarantees a perfect connection between the

interface female connector and the cable male connector. At the installation moment, the male
connector must be inserted in the module female connector until a click is heard, assuring the lock

3. Installation

 25

action. To disconnect the cable from the module, the lock lever must be used to unlock one from the

other.

Serial Network Connection RS-232

The NX3010, NX3020 and NX3030 COM 1 non isolated communication interface allows the
connection to a RS-232C network. As follows it’s presented the DB9 female connector to Nexto

CPU, with identification and sign description.

Figure 3-4. DB9 Female Connector, NX3010, NX3020 and NX3030 CPUs (COM 1)

Pin Sign Description

1 DCD Data Carrier Detect

2 TXD Data Transmission

3 RXD Data Reception

4 - Not used

5 GND Ground

6 - Not used

7 CTS Clear to Send

8 RTS Request to Send

9 - Not used

Table 3-4. DB9 Female Connector Pin Layout, NX3010, NX3020 and NX3030 CPUs (COM 1)

RS-232C Communication

For connection to an RS-232C device, use the appropriate cable as the chapter Related Products.

Serial Network Connection RS-485/422

The NX3004/NX3005-COM 1 and NX3010/NX3020/NX3030-COM 2 isolated communication
interfaces allows the connection to a RS-485/422 network. As follows it’s presented the DB9 female

connector to Nexto CPU, with identification and sign description.

3. Installation

 26

Figure 3-5. DB9 Female Connector, NX3004/NX3005 CPU (COM 1) and NX3010/NX3020/NX3030 CPU

(COM 2)

Pin Sign Description

1 - Not used

2 Term+ Internal Termination, positive

3 TXD+ Data Transmission, positive

4 RXD+ Data Reception, positive

5 GND Negative Reference for External Termination

6 +5V Positive Reference for External Termination

7 Term- Internal Termination, negative

8 TXD- Data Transmission, negative

9 RXD- Data Reception, negative

Table 3-5. DB9 Female Connector Pin Layout, COM 1 (NX3004/NX3005) and COM 2

(NX3010/NX3020/NX3030)

RS-485 Communication without termination

In order to connect in a RS-485 network with no termination in COM 1 (NX3004 or NX3005) or

COM 2 (NX3010, NX3020 or NX3030) interface, the cable AL-1763 identified terminals must be
connected in the respective device terminals, as shown on Table 3-6.

AL-1763 terminals Device terminal signals

0 Shield

1 Not connected

2 D+

3 D+

4 Not connected

5 Not connected

6 Not connected

7 D-

8 D-

Table 3-6. RS-485 Connections with no Termination

The Figure 3-6 diagram indicates how the AL-1763 connection terminals should be connected in the

device terminals.

3. Installation

 27

Figure 3-6. RS-485 Connections with no Termination Diagram

Diagram Note:

The not connected terminal must be insulated so they do not make contact with each other.

RS-485 Communication with Internal Termination

In order to connect in a RS-485 network using the internal termination in COM 1 (NX3004 or

NX3005) or COM 2 (NX3010, NX3020 or NX3030) interface, the cable AL-1763 identified
terminals must be connected in the respective device terminals, as shown on Table 3-7.

AL-1763 terminals CPU terminal signals

0 Shield

1 D+

2 D+

3 D+

4 Not connected

5 Not connected

6 D-

7 D-

8 D-

Table 3-7. RS-485 Connections with Internal Termination

PS.: The internal termination available in COM 1 (NX3004 and NX3005) or COM 2 (NX3010,

NX3020 and NX3030) is safe state type in open mode.

The Figure 3-7 diagram indicates how the AL-1763 connection terminals should be connected in the

device terminals.

Figure 3-7. RS-485 Connections with Internal Termination Diagram

3. Installation

 28

Diagram Note:

The not connected terminals must be insulated so they do not make contact with each other.

RS-485 Communication with External Termination

In order to connect to a RS-485 network using a COM 1 (NX3004 or NX3005) or COM 2 (NX3010,

NX3020 or NX3030) interface external termination, the AL-1763 cable identified terminals must be

connected in the respective device terminals according to the Table 3-8.

AL-1763 terminals CPU terminal signals

0 Shield

1 Not connected

2 D+

3 D+

4 0 V

5 +5 V

6 Not connected

7 D-

8 D-

Table 3-8.RS-485 Connections with External Termination

The Figure 3-8 diagram indicates how the AL-1763 connection terminals should be connected in the

device terminals.

Figure 3-8. COM 2 with RS-485 Connections Diagram with External Termination

Diagram Note:

The not connected terminals must be insulated so they do not make contact with each other.

Example of Connection of a RS-485 Network with External Termination and Master
Redundancy

Figure 3-9 below shows an example of RS-485 network connection with external termination, using
two Nexto NX3030 CPUs with half-cluster redundancy as master.

3. Installation

 29

Figure 3-9. Connection Diagram of a RS-485 Network with External Termination and Master

Redundancy

RS-422 Communication without Termination

In order to connect in a RS-422 network with no termination in COM 1 (NX3004 and NX3005) or

COM 2 (NX3010, NX3020 and NX3030) interface, the cable AL-1763 identified terminals must be

connected in the respective device terminals, as shown on Table 3-9.

AL-1763 terminals CPU terminal signals

0 Shield

1 Not connected

2 TX+

3 RX+

4 Not connected

5 Not connected

6 Not connected

7 TX-

8 RX-

Table 3-9. RS-422 Connections with no Termination

The Figure 3-10 diagram indicates how the AL-1763 connection terminals should be connected in the
device terminals.

3. Installation

 30

Figure 3-10. RS-422 Connections with no Termination Diagram

Diagram Note:

The not connected terminal must be insulated so they don’t make contact with each other.

RS-422 Communication with Internal Termination

In order to connect in a RS-422 network using the internal termination in COM 1 (NX3004 and

NX3005) or COM 2 (NX3010, NX3020 and NX3030) interface, the cable AL-1763 identified

terminals must be connected in the respective device terminals, as shown on Table 3-10.

AL-1763 terminals CPU terminal signals

0 Shield

1 TERM+

2 TX+

3 RX+

4 Not connected

5 Not connected

6 TERM-

7 TX-

8 RX-

Table 3-10. RS- 422 Connections with Internal Termination

PS.: The internal termination available in COM 2 is secure state in open mode.

The Figure 3-11 diagram indicates how the AL-1763 connection terminals should be connected in the
device terminals.

Figure 3-11. RS-422 Connections with Termination Diagram

3. Installation

 31

Diagram Note:

The not connected terminal must be insulated so they do not make contact with each other.

RS-422 Communication with External Termination

In order to connect in a RS-422 network using the COM 1 (NX3004 or NX3005) or COM 2

(NX3010, NX3020 or NX3030) interface external termination, the cable AL-1763 identified

terminals must be connected in the respective device terminals, as shown on Table 3-11.

AL-1763 Terminals CPU terminal signals

0 Shield

1 Not connected

2 TX+

3 RX+

4 0 V

5 +5 V

6 Not connected

7 TX-

8 RX-

Table 3-11. RS-422 Connections with External Termination

The Figure 3-12 diagram indicates how the AL-1763 connection terminals should be connected in the

device terminals.

Figure 3-12. RS-422 Connections with External Termination Diagram

Diagram Note:

The not connected terminals must be insulated so they do not make contact with each other.

RS-422 Network Example

Figure 3-13 below shows an example of RS-422 network utilization, using the Nexto CPU as master,

slave devices with RS-422 Interface, and Altus solutions for terminators and connections.

3. Installation

 32

Figure 3-13. RS-422 Network Example

Diagram Note:

The AL-2600 modules which are in the network endings perform the terminators function. In this

case the AL-2600 keys must be configured in PROFIBUS Termination.

Memory Card Installation

This section presents how to insert the memory card into the models NX3010, NX3020 and NX3030
Nexto Series CPUs . For further information see Configuration – Memory Card chapter.

Initially, care must be taken with the correct position the memory card must be inserted. One corner

of it is different from the other three and this one must be used as reference for the card correct

insertion. Therefore, the memory card must be inserted following the depiction on the CPU frontal
part or the way showed on Figure 3-14.

Figure 3-14. Memory Card Insertion in the CPU

When the card is correctly installed, a symbol will appear on the CPU graphic display. For card
secure removing the MS key must be pressed then there is a little delay and the card symbol will

disappear from the graphic display. The card is now ready to be taken off. For that, the card must be

3. Installation

 33

pressed against the CPU until a click is heard, then release it and withdraw it from the compartment

as showed on Figure 3-15. At this moment the card will be loose.

Figure 3-15. Memory Card Withdrawal

Architecture Installation

Module Installation on the Main Backplane Rack

Nexto Series has an exclusive method for connecting and disconnecting modules on the bus which

does not require much effort from the operator and guarantee the connection integrity. For further
information regarding Nexto Series products fixation, please see Nexto Series User Manual –

MU214600.

Programmer Installation

To execute the MasterTool IEC XE development software installation, it is necessary to have the

distribution CD-ROM or download the installation file from the site
http://www.altus.com.br/site_en/. For further information about the step by step to installation,

consult MasterTool IEC XE User Manual MT8500 – MU299609.

http://www.altus.com.br/

4. Configuration

 34

4. Configuration

The Nexto Series CPUs are configured and programmed through the MasterTool IEC XE software.

The configuration made defines the behavior and utilization modes for peripherals use and the CPUs
special features. The programming represents the application developed by the user, also known as

applicative.

CPU Configuration

General Parameters

The parameters related below are part of the CPU configuration inserted in the application. Each item
must be correctly revised for the project perfect execution.

Besides these parameters, it is possible to change the name of each module inserted in the application

by clicking the right button on the module. In the “Properties” item from the “Common” sheet,
change the name, what is limited to 24 characters.

Configuration Description Default Options

%Q Initial
Address

Diagnostics Area (%Q)

CPU diagnostics
initial address (%Q)

Automatically

allocated in the
project creation

NX3004: 0 to 32210

NX3005: 0 to 32210

NX3010: 0 to 32210

NX3020: 0 to 64843

NX3030: 0 to 97611

Size
Diagnostics area size

in bytes

NX3004: 558

NX3004: 558

NX3010: 558

NX3020: 693

NX3030: 693

It is not possible to change

the size of the CPU
diagnostics area

%Q Initial
Address

Retain Area (%Q)

Retentive data

memory initial
address(%Q)

NX3004: 4096

NX3005: 4096

NX3010: 4096

NX3020: 4096

NX3030: 4096

NX3004: 0 to 32767 less the
memory size of retentive data

NX3005: 0 to 32767 less the
memory size of retentive data

NX3010: 0 to 32767 – less the
memory size of retentive data

NX3020: 0 to 65535 – less the
memory size of retentive data

NX3030: 0 to 98303 less the
memory size of retentive data

Size
Retentive data

memory size in bytes

NX3004: 7680

NX3005: 7680

NX3010: 32768

NX3020: 65536

NX3030: 98304

NX3004: 0 to 7680

NX3005: 0 to 7680

NX3010: 0 to 32768

NX3020: 0 to 65536

NX3030: 0 to 98304

%Q Initial
Address

Persistent Area (%Q)

Persistent data

memory initial
address (%Q)

NX3004: 12288

NX3005: 12288

NX3010: 12288

NX3020: 20480

NX3030: 20480

NX3010: 8192

NX3020: 16384

NX3004: 0 to 32767 less the

memory size of retentive data

NX3005: 0 to 32767 less the
memory size of retentive data

NX3010: 0 to 32767 – less the
memory size of retentive data

NX3020: 0 to 65534 – less the

memory size of retentive data

NX3030: 0 to 98302 – less

the memory size of retentive
data

Size
Persistent data

memory size in bytes

NX3004: 7680

NX3005: 7680

NX3004: 0 to 7680

NX3005: 0 to 7680

4. Configuration

 35

NX3010: 32768

NX3020: 65536

NX3030: 98304

NX3010: 0 to 32768

NX3020: 0 to 65536

NX3030: 0 to 98304

Start User

Application After
a Watchdog

Reset

CPU Parameters

When enabled starts
the user application

after the hardware
watchdog reset or
through the Runtime

restart, but keeps the
diagnostics indication
via LED WD and via

variables

Disable
Enable

Disable

Hot Swap Mode Hot module change

Enable, without

consistency in the
start

- Disable, for declared

modules only
- Disabled
- Enable, with consistency in

the start only for declared
modules
- Enable, with consistency in

the start
- Enabled, without
consistency in the start

Initial Time-out
(x100 ms)

TCP/IP Parameters

Indicates how long

after the first
transmission of a
message, it has to be

retransmitted,
assuming it was not
received by the

destination device.
Every retransmission
the time-out is

doubled.

2 1 to 75

ACK Delay (x10

ms)

Delay time for a

confirmation
command sending

10 0 to 100

 Project Parameters

Consist retain
and persistent

area in %Q

Configuration to

consist the
addressable

persistent and
retentive memories

Marked

 - Marked: It consists the

addressable persistent and
retentive memories

- Unmarked: It doesn’t consist

the addressable persistent
and retentive memories

Enable I/O update
per task

Configuration to

update the inputs
and outputs within
the tasks that they

are used.

Unmarked

- Marked: The inputs and
outputs are updated within the

tasks in which they are used.

- Unmarked: The inputs and

outputs are updated only by
the MainTask.

Enable retain and

persistent
variables in

Function Blocks

Configuration to

allow the use of
retain and persistent

variables on Function
Blocks

Unmarked

- Marked: allows the use of
retain and persistent variables

on Function Blocks.

- Unmarked: If this is done

with this option unmarked, it
may occur an exception error
on startup.

Table 4-1. CPU Configuration

Notes:

Generate error on tasks watchdog consistency: This parameter was discontinued as of MasterTool

IEC XE version 1.32.

Enable I/O update per task: This parameter was added as of MasterTool IEC XE version 2.01.

4. Configuration

 36

ATTENTION:

When the initial address or the retentive or persistent data memory size are changed in the user

application, the memory is totally reallocated, what makes the retentive and persistent variable area
be clean. So the user has to be careful so as not to lose the saved data in the memory.

ATTENTION:

In situations where the symbolic persistent memory area is modified, a message will be displayed by

MasterTool IEC XE programmer, to choose the behavior for this area after charging the modified
program. The choice of this behavior does not affect the persistent area of direct representation,

which is always clean.

ATTENTION:

The option Enable I/O update per task is not supported for fieldbus masters such as NX5001

module. This feature is applicable only for input and output modules present on the controller local

bus (main rack and expansion racks).

ATTENTION:

Even when an I/O point is used in other tasks, with the Enable I/O update per task marked, it will

continue to be updated in the MainTask as well; except when all the points of the module are used in
some other task, in this case they will not be updated on MainTask anymore.

Hot Swap

Nexto Series CPUs have the possibility of I/O modules change in the bus with no need for system

turn off and without information loss. This feature is known as hot swap.

CAUTION:
Nexto Series CPUs do not guarantee the persistent and retentive variables retentivity in case
the power supply or even the CPU is removed from the energized backplane rack.

On the hot swap, the related system behavior modifies itself following the configuration table defined

by the user which represents the options below, as described on Table 4-1:

 Disable, for declared modules only

 Disabled

 Enabled, with consistency in the start only for declared modules

 Enabled, with startup consistency

 Enabled, without consistency in the start

Therefore, the user can choose the behavior the system must assume in abnormal bus situations and

when the CPU is in Run Mode. Table 4-2 presents the possible abnormal bus situations.

Situation Possible causes

Incompatible

configuration

- Some module connected to the bus is different from the model that is declared in

configuration.

Absent module

- The module was removed from the bus.

- Some mal functioning module is not responding to CPU
- Some bus position is malfunctioning.

Table 4-2. Bus Abnormal Situations

4. Configuration

 37

For further information regarding the diagnostics correspondent to the above described situations, see

Diagnostics via Variables.

If a module is present in a specific position in which should not exist according to the configuration
modules, this module is considered as non-declared. The options of hot swap Disabled for Declared

Modules Only and Enabled with Consistency in the Start Only for Declared Modules do not take into

consideration the modules that are in this condition.

Hot Swap Disabled, for Declared Modules Only

In this configuration, the CPU is immediately in Stop Mode when an abnormal bus situation (as

described on Table 4-2) happens. The LED DG starts to blink 4x (according to Table 4-3). In this

case, in order to make the CPU to return to the normal state Run, in addition to undo what caused the
abnormal situation, it is necessary to execute a Warm Reset or a Cold Reset (it can be done through

the Communication menu of the MasterTool IEC XE). If a Reset Origin is carried out, it will be

necessary to perform the download so that the CPU can return to the normal state (Run). The Reset
commands Warm, Cold and Origin can be done by MasterTool IEC XE in the Communication menu.

The CPU will remain in normal Run even if find a module not declared on the bus.

Hot Swap Disabled

This setting does not allow any abnormal situation in the bus (as shown in Table 4-2) modules
including undeclared and present on the bus. The CPU enters in stop mode, and the DG LED begins

to blink 4x (as in Table 4-3). For these cases, to turn the CPU back to normal Run, in addition to

undo what caused the abnormal situation it is necessary to perform a Reset Warm or Reset Cold. If a
Reset Origin is done, you need to download the project so that the CPU can return to normal Run.

The Reset commands Warm, Cold and Reset Origin can be done by MasterTool IEC XE in the

Communication menu.

Hot Swap Enabled with Consistency in the Start Only for Declared Modules

“Start” is the interval between the CPU energization (or reset command or application download)

until the first time the CPU gets in Run Mode after been switched on. This configuration verifies if

any abnormal bus situation has occurred (as described on Table 4-2) during the start. In affirmative
case, the CPU gets in Stop Mode and the LED DG starts to blink 4x (according to Table 4-3).

Afterwards, in order to set the CPU in Run mode, further to fix what caused the abnormal situation, it

is necessary to execute a Warm or Cold Reset command, which can be done by the MasterTool IEC
XE (Communication menu). If a Reset Origin is carried out, it will be necessary to perform the

download so that the CPU can return to the normal state (Run).

After the start, if any module present any situation described in the Table 4-2, the system will
continue to work normally and will signalize the problem via diagnostics.

If there is no other abnormality for the declared modules, the CPU will go to the normal state –Run-

even if a non-declared module is present on the bus.

ATTENTION:
- In this configuration when a power fault occurs (even temporally), Reset Warm Command, Reset

Cold Command or a new application Download has been executed, and if any module is in an

abnormal bus situation, the CPU will get into Stop Mode and the LED DG will start to blink 4x

(according to Table 4-3). This is considered a start situation.
- This is the most advised option because guarantee the system integrity on its initialization and

allows the modules change with a working system.

Hot Swap Enabled with Startup Consistency

This setting checks whether there has been any abnormal situation in the bus (as shown in Table 4-2)

during the start, even if there is no declared modules and present on the bus; if so, the CPU goes into

4. Configuration

 38

Stop mode and the LED DG starts to blink 4x (as shown in Table 4-3). For these cases, to turn the

CPU back to normal Run, in addition to undo what caused the abnormal situation it is necessary to

perform a Reset Warm or Reset Cold. If a Reset Origin is done, you need to download the project so
that the CPU can return to normal Run. The Reset commands Warm, Cold and Reset Origin can be

done by MasterTool IEC XE in the Communication menu.

Hot Swap Enabled without Consistency in the Start

Allows the system to start working even if a module is in an abnormal bus situation (as described on

Table 4-2). The abnormal situations are reported via diagnostics during and after the start.

ATTENTION:

This option is advised for the system implementation phase as it allows the loading of new
applications and the power off without the presence of all configured modules.

How to do the Hot Swap

CAUTION:
Before performing the Hot Swap it is important to discharge any possible static energy
accumulated in the body. To do that, touch (with bare hands) on any metallic grounded
surface before handling the modules. Such procedure guaranties that the module static energy
limits are not exceeded.

ATTENTION:

It is recommended the hot swapping diagnostics monitoring in the application control developed by

the user in order to guarantee the value returned by the module is validated before being used.

The hot swap proceeding is described below:

 Unlock the module from the backplane rack, using the safety lock

 Take off the module, pulling firmly

 Insert the new module in the backplane rack

 Certify the safety lock is completely connected. If necessary, push the module harder towards to

the backplane rack

In case of output modules is convenient the points to be disconnected when in the changing process,

in order to reduce the generation of arcs in module connector. This must be done by switching off the

power supply or by forcing the output points using the software tools. If the load is small, there is no
need for disconnecting.

It is important to note that in the cases the CPU gets in Stop Mode and the LED DG starts to blink 4x

(according to Table 4-3), due to any abnormal bus situation (as described on Table 4-2), the output
modules have its points operation according to the module configuration when CPU toggles from

Run Mode to Stop Mode. In case of application startup, when the CPU enters Stop Mode without

having passed to the Run Mode, the output modules put their points in failure secure mode, in other

words, turn it off (0 Vdc).

Regarding the input modules, if one module is removed from energized backplane rack, the logic

point’s state will remain in the last value. In the case a connector is removed, the logic point’s state

will be put in a safe state, it means zero or high impedance.

ATTENTION:

Always proceed to the substitution of one module at a time for the CPU to update the modules state.

Below, Table 4-3 presents the bus conditions and the Nexto CPU LED DG operation state. For

further information regarding the diagnostics LEDs states, see Diagnostics via LED chapter.

4. Configuration

 39

Condition

Enabled with

Startup
Consistency

Enabled, with

Consistency in
the Start Only for

Declared Modules

Enabled without

Consistency in the
Start

Disabled

Disabled for

declared modules
only

Non declared

module

LED DG: 2x

Application: Run

LED DG: 2x

Application: Run

LED DG: Blinks 2x

Application: Run

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 2x

Application: Run

Non declare

module (start
condition)

LED DG: Blinks 4x
Application: Stop

LED DG: Blinks 2x
Application: Run

LED DG: Blinks 2x
Application: Run

LED DG: Blinks 4x
Application: Stop

LED DG: Blinks 2x
Application: Run

Absent module
LED DG: Blinks 2x

Application: Run

LED DG: Blinks 2x

Application: Run

LED DG: Blinks 2x

Application: Run

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

Absent module

(start condition)

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 2x

Application: Run

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

Incompatible
configuration

LED DG: Blinks 2x
Application: Run

LED DG: Blinks 2x
Application: Run

LED DG: Blinks 2x
Application: Run

LED DG: Blinks 4x
Application: Stop

LED DG: Blinks 4x
Application: Stop

Incompatible

configuration

(start condition)

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 2x

Application: Run

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

Duplicated slot

address

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

Non-operational

module

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

LED DG: Blinks 4x

Application: Stop

Table 4-3. Hot Swap and Conditions Relations

Note:

Enabled, without startup consistency: When this hot-swap mode is configured, in normal
situations when there’s a incompatible module on the system’s startup, the application will go from

Stop to Run. However, if that module is configured as a NX5000 or a NX5001 and there’s a different

module in that position, the application will stay in Stop.

Retain and Persistent Memory Areas

The Nexto CPU allows the use of symbolic variables and output variables of direct representation as

retentive or persistent variables.

The output variables of direct representation which will be retentive or persistent must be declared in
the CPU General Parameters as described at Configuration-CPU Configuration-General Parameters.

Symbolic names also can be attributed to these output variables of direct representation using the AT

directive, plus using the key word RETAIN or PERSISTENT on its declaration. For example, being
%QB4096 and %QB20480 within the retentive and persistent memory, respectively:

PROGRAM MainPrg

VAR RETAIN

byVariavelRetentiva_01 AT %QB4096 : BYTE;

END_VAR

VAR PERSISTENT

byVariavelPersistente_01 AT %QB20480 : BYTE;

END_VAR

In case the symbolic variables declared with the AT directive are not inside the respective retentive
and/or persistent memory, errors during the code generation in MasterTool can be presented (as

described at Configuration-CPU Configuration-General Parameters, configuration Consist retain and

persistent area in %Q), informing that there are non-retentive or non-persistent variables defined in
the retentive or persistent memory spaces.

Regarding the symbolic variables which will be retentive or persistent, only the retentive variables

may be local or global, as the persistent symbolic variables shall always be global. For the

4. Configuration

 40

declaration of retentive symbolic variables, it must be used the key word RETAIN. For example, for

local variables:

PROGRAM MainPrg

VAR RETAIN

wLocalSymbolicRetentiveVariable_01 : WORD;

END_VAR

Or, for global variables, declared within a list of global variables:

VAR_GLOBAL RETAIN

wGlobalSymbolicRetentiveVariable_01 : WORD;

END_VAR

On the other hand, the persistent symbolic variables shall be declared in a Persistent Variables object,
being added to the application. These variables will be global and will be declared in the following

way within the object:

VAR_GLOBAL PERSISTENT RETAIN

wGlobalSymbolicPersistentVariable_01 : WORD;

END_VAR

As of versions 1.5.0.22 for NX3004 and 1.5.1.1 for NX3010, NX3020 and NX3030, the Nexto series

CPUs allow flexibility on the usage of retentive and persistent memories. This means that the user

will be able to choose the size that will be used for each type of memory, as long as the retentive and

persistent memory sum don’t exceed the total limit available in each CPU model. The total of
retentive and persistent memory available is described in Table 2-5 in Specific Features.

If the retentive symbolic, persistent symbolic, retentive %Q and persistent %Q memory sum exceed

the total available, MasterTool will show an error during the code generation.

If, for example, an NX3004 CPU that has 7680 Bytes of retentive and persistent memory is used and

it’s configured 1000 retentive Bytes and 1000 directly addressable (%Q) output Bytes and, still, the

variables in the code below are declared, the total retentive and persistent memory used is going to be

2004 Bytes, leaving 5676 Bytes for free usage.

VAR_GLOBAL PERSISTENT RETAIN

wVariavelSimbolicaPersistenteGlobal_01 : WORD;

END_VAR

VAR_GLOBAL RETAIN

wVariavelSimbolicaRetentivaGlobal_01 : WORD;

END_VAR

ATTENTION:
To use the retentive and persistent memory flexibly, it’s necessary to use MasterTool IEC XE 2.03

or higher.

TCP Configurations

Some of the advanced configurations affect the Nexto Series CPUs supported protocols, as they are
connected to the TCP network layer, as following:

 Initial Time-out

 ACK Delay

The CPU Nexto, before it responds to any request and as any other Ethernet equipment which uses

the TCP transport layer, demands a communication door opening, in other words, the connection
establishment.

4. Configuration

 41

The Interface connections quantity is limited and simply does not establish any other connection after

its limit is reached. This can cause problems for the established connections in the server mode, as

the connections closing depends on the other equipment, the client.

The TCP transport layer, responsible for the messages deliver from the origin to destiny, has some

parameters with time-outs, very common in general communication protocols. Such parameters are

intended to recover the communication after the failures are determined. The user must be aware with
the time-outs configuration, as it some conflicts might occur with the values configured inside the

application layer. As the TCP configuration is a reference for every instances configured, the time

will be valid if it is smaller than the configured inside a protocol:

 Initial Time-out: indicates how long, after the first message transmission, the message must be

retransmitted, assuming it has not been received by the destiny device. At each retransmission the
time-out is doubled. The number of transmission tries is connected to the communication time-

out configured inside the protocol. It will be the maximum time before it gives up the message

delivering, when the transmission failure is concretized. In addition, it is important to stress that
there’s a maximum quantity of attempts for the Nexto Series CPUs. This number is set in five

attempts before the connection is set up and in three attempts after that. Every time it reaches the

maximum number of retries, the communication attempt process restarted. See Protocols

Configuration section further details regarding time-out parameters utilization as they can be
different depending on the situation. It is important to stress this parameter is only used in the

connection setting up, after that it is used statistics from the last communications to calculate the

new time-out.

Example of the initial time-out and the communication time-out parameters inside the MODBUS

TCP Server, considering a not received acknowledge, for the following values: 300 for initial time-

out (300 ms) and 3000 for communication time-out (3000 ms):

Figure 4-1. Initial Time-out and Communication Time-out

Legend:

17. Message transmission instant.

18. First attempt for message transmitting, after initial time-out.
19. Second attempt for message transmission, after two times the initial time-out.

20. Third try for message transmission, after two times the latter time-out.

21. Quit of message transmission and failure indication, after the communication time-out exceeds
(total time until the given up: 300 + 600 + 1200 + 900 = 3000 ms).

22. It would be the fourth message transmission attempt, after two times the latter time-out but the

communication time-out configured inside the protocol was exceeded and the failure was
indicated.

 ACK sending delay: defines the maximum time waited by the interface for the TCP ACK

transmitting. This ACK is responsible for the message receiving conformation, in case of

MODBUS, by the destiny device. The set of this field decreases the amount of messages circling

through the network. This mechanism is explained below:

o All request messages, sent by a client to a server, need to be confirmed by the server through

an ACK message transmitted to the client.

o All response messages, sent by a client to a server, need to be confirmed by the server through
an ACK message transmitted to the client.

4. Configuration

 42

o If one of the parts does not receive the ACK message, within the time defined by the TCP

time-out, the message will be retransmitted by the origin address (see TCP number of tries

parameter)
o The ACK message does not need to be exclusive. The ACK needed to be sent by the server to

the client, at the moment it receives a request, can be included in the same answer message,

and the ACK needed to be sent by the client to the server, at the request moment, can be
included in the same message including the next request.

The following pictures depict the difference between the sending of an immediate and a calibrated

ACK:

ATTENTION;
The NX3004 and NX3005 CPUs have a slightly different behavior. They don’t consider the value

configured on the parameter Initial Time out, they consider only the communication Time out. Even

so, the value configured for communication Time out is used when it’s inferior to 3 seconds and it’s

never going to be doubled on retries. But when the communication time out parameter is superior to
3 seconds, they ignore this value and consist the initial value of 3 seconds and double each retry.

Figure 4-2. Example of an Immediate ACK Sending (=0)

Figure 4-3. Example of a Calibrated ACK Sending

4. Configuration

 43

ATTENTION:

All operational systems with support to TCP/IP protocol network interface have equivalent

parameters to the discussed in this chapter for the Nexto Series CPUs Ethernet interface. In the
Windows ® operational system, these parameters are defined in the system registers, under several

different identifications, and must be modified only by network administrators, thus affect all

programs and applicative installed under the operational system.

ATTENTION:

The delay parameter in case of ACK sending only applies to communication between the CPU and

the MasterTool IEC XE software. To communicate with other devices and/or other protocols

(MODBUS, for example) the standard used shall be “no delay”.

Project Parameters

The CPU project parameters are related to the configuration for input/output refreshing at the task

that they are used of the project tasks and consistency of the retentive and persistent area in %Q, and

in the cases of the NX3010, NX3020 and NX3030 CPUs, the options for reading and writing on the
memory card.

Configuration Description Default Options

Consist retain and

persistent area in %Q

Performs the consistency of retentive and

persistent areas in %Q.
Unmarked

- Marked

- Unmarked

Enable I/O update per

task

Updates the input and output in the tasks

where they are used.
Unmarked

- Marked

- Unmarked

Enable retain and

persistente variables in
Function Blocks

Setting to allow the use of retentive and
persistent variables in function blocks

Unmarked
- Marked

- Unmarked

Copy Project from CPU

to Memory Card

Memory Card

Copy the project from the CPU internal

memory to the memory card
Disabled

Enabled: Configuration enabled

Disabled: Configuration disabled

Password to Copy
Project from CPU to

Memory Card

Password for coping the project from the
CPU internal memory to memory card

- 6 digits password (0 to 999999)

Copy Project from

Memory Card to CPU

Copy the project from the memory card to

the CPU internal memory
Disabled

Enabled: Configuration enabled

Disabled: Configuration disabled

Password to Copy

Project from Memory
Card to CPU

Password for coping the project from the

memory card to the CPU internal memory
- 6 digits password (0 to 999999)

Table 4-4. CPU Project Parameters

ATTENTION:

After setting the project copy possibilities and having created the startup application, it must be

found the “Application.crc” file in order the configurations concerning the memory card have effect.
The search can be done at Select Application.crc through the “Locate File...” key, as can be seen on

Figure 4-66.

External Event Configuration

The external event is a feature available in the CPU which enables a digital input, configured by the

user, when activated, triggers the execution of a specific task with user-defined code. Thus, it is

possible that through this input, when triggered, interrupt the execution of the main application and

run the set application in the task ExternInterruptTask00, which has higher priority than other
application tasks.

It is also important to note that, to avoid the generation of several events in a very short space of

time, that was limited the treatment of this type of event in every 10 ms, i.e., if two or more events

4. Configuration

 44

occurs during 10 ms after the first event, the second and subsequent events are discarded. This

limitation is imposed to prevent an external event that is generated in an uncontrolled way, do not

block the CPU, since the task has a higher priority over the others.

To configure an external event is necessary to insert a digital input module and perform the

configurations described below, in the CPU, through the software programming tool MT8500.

Figure 4-4. Configuration Screen for External Event in CPU

In the configuration external event tab, within the CPU settings, it is necessary to select which

module will be the interruption source, in the field Module Address: Name. Then it must be selected
which input of this module will be responsible for the event generation (IO_EVT_0). In this selection

the options described in the Figure 4-5 can be chosen.

4. Configuration

 45

Figure 4-5. NX1001 Module External Event Source Options

In addition to configuring the CPU it is required to configure the task responsible for executing user-

defined actions. In this case the user must use a project profile that supports external events. For

further information see the chapter Project Profiles. In the configuration screen of the
ExternInterruptTask00 task (Figure 4-6), it is necessary to select the event source in the

corresponding field. In this case, IO_EVT_0 should be selected since the other origin sources

(IO_EVT_1 to IO_EVT_7) are not available. In the sequence, the field POUS should be checked if

the right POU is selected, because it will be used by the user to define the actions to be performed
when an external event occurs.

Figure 4-6. ExternInterruptTask00 Configuration Screen

SOE Configuration

The SOE (Sequence of Events) is responsible for the generation of a sequence of digital events.

Through the SOE it is possible to analyze the historic behavior of the system variables mapped in its

monitoring area. The SOE is an exclusive service available for the NX3020 and NX3030 models.

4. Configuration

 46

Once the SOE service has been enabled, the CPU starts to behave as a DNP3 server, thus it is

necessary the support to the DNP3 protocol by the client for the use of this resource. The supported

object types as well as the function codes and the qualifiers can be found at DNP3 Device Profile

The SOE service uses the %Q addresses in order to form its base of static data. For it, it has to be set

a continuous area of %Q memory where the user will inform its beginning and size divided by two.

For redundant projects the %Q area also has to be redundant so that in the switchover moment the
DNP3 server data base is kept.

The DNP 3 initial address will always be 0, corresponding to %QBxxxx.0 and the last address will

be: ((Area Size of %Q * 8)*2) -1.

Thus, once defined the static data base, the user must copy each digital point which should generate
events within the %Q continuous area. The maximum number of points which can be copied is 8000.

For the events configuration, it is necessary to inform only the size of the events queue. This queue is

persistent and redundant, so the events will not be lost in the switchover moment neither in case of a
power supply failure. In case an overflow occurs in the events queue, the oldest events will be

overwritten. In case in one single cycle are generated more events than what is supported by the

queue, its generation is interrupted and the overflow diagnostic is turned on

(SOE[x].bOverflowStatus). For example, if 100+n bits vary in a 100 events configuration, causing a
dispose of n events.

The SOE will run in the MainTask context, starting already at the first cycle. The SOE will run at the

end of each MainTask cycle, comparing the mapped bits in order to detect transitions occurred in the
cycle. In this way, every cycle in which the events are generated, an increase of time in this cycle of

the MainTask will occur. In the worst case (1000 events, being generated only 1000 and discarded

the remaining ones), this influence will be approximately of 5 ms. Therefore, for an application with
the SOE enabled, the user will have to take into account this time when setting the parameters of

watchdog time and interval of the MainTask.

For the use of it the user must set the following parameters in the SOE Configuration tab:

Figure 4-7. Events Sequence Configuration

4. Configuration

 47

Configuration Description Default Value Options

General Configurations

SOE Service Enables the SOE. Disabled
Enabled

Disabled

Ethernet

Interface

Selects the used

interface.
NET1

NET1

NET2

Keep Alive
Interval (ms)

Keep alive (ms) interval
messages.

10000 0 to 4294967295

Events Queue

Size
Events queue size 1000 100 to 1000

Communication Points

Offset of %Q

Start Address

Initial address for static

data
20480

Any %Q area address can

be used

Size of Area %Q
Memory size to be used
by the static data (%Q).

1000 1 to 1000

Client Configuration

Configuration Description Default Value Options

Number of

Clients

Defines the number of

clients.
2 1, 2

TCP Port for
Client 1

Selects the
communication port for

the first client.

20000 1 to 65535

TCP Port for

Client 2

Selects the

communication port for
the second client.

20001 1 to 65535

Table 4-5. SOE Configuration

Notes:

Data Memory Size: The data memory size reserved to be used by the static data will always be

twice the value set as the second half of the memory area is used to store the previous variables
values of the first half.

Keep Alive: While it is connected to a client, keep alive messages will be sent in intervals according

to what has been set. If the client does not respond to these messages, the connection is closed. That

is, a connection between client and server may take a time equal to the interval set to be closed in
case of error.

In the advanced options (Advanced... key) it is possible to set the communication addresses regarding

to the DNP3 protocol.

Configuration Description Default Value Options

DNP3 Source

Address
Origin Address (PLC) 4 0 to 65519

DNP3 Destination
Address of Client
1

Address of the first
client

3 0 to 65519

DNP3 Destination

Address of Client
2

Address of the first

client
3 0 to 65519

Table 4-6 SOE. Advanced Configurations

Note:

DNP3 Address: The DNP3 addresses from the range 65520 to 65535 cannot be set at the origin or at

a destiny as they are used for messages in broadcast.

4. Configuration

 48

ATTENTION:

The DNP3 DataLink messages are not used by the Nexto series CPUs as the standard does not

recommend its use them in TCP/IP communications.

Time Synchronization

For the time synchronization, Nexto Series CPUs use the SNTP (Simple Network Time Protocol)

protocol. For that, the CPU will behave as a SNTP client, which is, it will send requests of time

synchronization to a SNTP/NTP server which can be in the local net or in the internet. The SNTP
client works with a 1 ms resolution, 100 ms precision, which means that when synchronization is

performed, the updated time in the client may be up to 100 ms early or late in relation to the server.

The CPU sends the cyclic synchronization requests according to the time set in the SNTP

Synchronization Period field. In the first synchronization attempt, just after the service start up, the
request is for the first server set in the first server IP address. In case it does not respond, the requests

are directed to the second server set in the second server IP address providing a redundancy of SNTP

servers. In case the second server does not respond either, the same process of synchronization
attempt is performed again but only after the Period of Synchronization having been passed. In other

words, at every synchronization period the CPU tries to connect once in each server, it tries the

second server in case the first one does not respond. The waiting time for a response from the SNTP
server is defined by default in 5 s and it cannot be modified.

If, after a synchronization, the difference between the current time of the CPU and the one received

by the server is higher than the value set in the Minimum Error Before Clock Update parameter, the

CPU time is updated.

SNTP uses the time in the UTC (Universal Time Coordinated) format, so the Time zone parameter

needs to be set correctly so the time read by the SNTP will be properly converted to a local time.

The execution process of the SNTP client can be exemplified with the following steps:

23. Attempt of synchronization through the first server. In case the synchronization occurs

successfully, the CPU waits the time for a new synchronization (Synchronization Period) and

will synchronize again with this server, using it as a primary server. In case of failure (the server

does not respond in less than 5 s) step 2 is performed.
24. Attempt of synchronization through the second server. In case the synchronization occurs

successfully, the CPU waits the time for a new synchronization (Synchronization Period) and

will try to synchronize with this server using the primary server. In case of failure (the server
does not respond in less than 5 s) the time relative to the Synchronization Period is waited and

step 1is performed again.

As the waiting time for the response of the SNTP server is 5 s, the user must pay attention to lower
than 10 s values for the Synchronization Period. In case the primary server does not respond, the time

for the synchronization will be the minimum of 5 s (waiting for the primary server response and the

synchronization attempt with secondary server). In case neither the primary server nor the secondary

one responds, the synchronization time will be 10 s minimum (waiting for the two servers response
and the new connection with first server attempt).

When NX3020 and NX3030 CPUs are used, depending on the SNTP server subnet, the client will

use an Ethernet interface which is in the corresponding subnet in order to do the synchronism
requests. In case it doesn’t have a configured interface at the same subnetwork of the server the

request may be made by any interfaces which can find a route for the server. That is also true for the

models NX3004, NX3005 and NX3010.

For the SNTP client, the user must set the following parameters in the SNTP Configuration tab,

accessed by the CPU in the devices tree:

4. Configuration

 49

Figure 4-8. SNTP Configuration

Configuration Description Standard Default Options

SNTP Service Enables the SNTP service Disabled
Disabled

Enabled

Period for SNTP
Synchronization (x1

sec)

Time interval of the
synchronization requests

(seconds)

60 1 to 255

Minimum Error Before
Clock Update (x1 ms)

Offset value acceptable

between the server and
client (milliseconds)

100 100 to 65519

Time zone (hh:mm)
Time zone of the user

location. Hours and minutes
can be inserted.

-3:00 -12:59 to +13:59

IP Address of the First
SNTP Server

IP Address of the primary
SNTP server

192.168.15.10
1.0.0.0 to

223.255.255.255

IP Address of the 2º

Second SNTP Server

IP Address of the secondary

SNTP server
192.168.15.11

1.0.0.0 to

223.255.255.255

Table 4-7. SNTP Configurations

Notes:

SNTP Server: It is possible to define a preferential address and another secondary one in order to

access a SNTP server and, therefore, to obtain a synchronism of time. If both fields are empty, the

SNTP service will remain disabled.

Factory default: from MasterTool IEC XE version 1.40 and later the factory default value for the IP
addresses of SNTP Servers have been changed.

ATTENTION:

The SNTP Service depends on the user application only for its configuration. Therefore, this service

will be performed even when the CPU is in STOP or BREAKPOINT modes since there is an
application in the CPU with the SNTP client enabled and properly set.

4. Configuration

 50

CAUTION:
It is vital a configuration of at least one SNTP server. It is recommended to set two SNTP
servers (primary and secondary). The SNTP synchronism is necessary to generate events with
timestamp coherent between CPA and CPB and with world time. Another purpose is to avoid
discontinuity during a switchover in applications which reference date and hour, considering
that there is no synchronism of date and hour between the CPs through NETA and NETB
synchronism channels.

Daylight Saving Time (DST)

The DST configuration must be done indirectly through the function SetTimeZone, which changes

the time zone applied to the RTC. In the beginning of the DST, it has to be used a function to

increase the time zone in one hour. At the end of the DST, it is used to decrease it in one hour.

For further information, see the section RTC Clock of this manual.

Serial Interfaces Configuration

COM 1 (NX3010/NX3020/NX3030)

The COM 1communicationinterface, present in the NX3010, NX3020 and NX3030 CPUs, is

composed by a DB9 female connector for RS-232C pattern. It allows the point to point
communication (or in network by using a converter) in MODBUS RTU slave or MODBUS RTU

master the open protocols.

The parameters which must be configured for the proper functioning of the application are described

below.

When using the MODBUS master/slave protocol, some of these parameters (such as Serial Mode,

Data Bits, RX Threshold and Serial Events) are automatically adjusted by MasterTool for the correct

operation of this protocol.

Configuration Description Default Options

Serial Type
Serial channel type
configuration

RS-232C RS-232C

Baud Rate
Serial communication port

speed configuration
115200

200, 300, 600, 1200, 1800, 2400, 4800,

9600, 19200, 38400, 57600, 115200 bps

Parity
Serial port parity

configuration
None

Odd

Even

Parity Always One

Parity Always Zero

No Parity

Data Bits

Sets the serial

communication character
bits quantity

8 5, 6, 7 and 8

Stop Bits
Sets the serial port stop

bits
1 1, 1.5 and 2

Serial Mode
Sets the serial port
operation mode

configuration

Normal Mode

Extended Mode: Extended operation

mode which delivers information
regarding the received data frame.

Normal Mode: Serial communication
normal operation mode.

Table 4-8. RS-232 Standard Serial Configuration

Notes:

Extended Mode: This serial communication operation mode provides information regarding the data

frame received. The information available is the following:

One byte for the received data (RX_CHAR : BYTE): Store the five, six, seven or eight bits from the
data received, depending on the serial communication configuration.

4. Configuration

 51

One byte for the signal errors (RX_ERROR : BYTE): It has the format described below:

 Bit 0: 0 - the character in bits 0 to 7 is valid. 1 - the character in bits 0 to 7 is not valid (or it

cannot be valid), due to problems indicated in bits 10 to 15

 Bit 1: Not used

 Bit 2: Not used

 Bit 3: UART interruption error. The serial input remained in logic 0 (parity always zero) for a

time greater than a character (start bit + data bit + parity bit + stop bit)

 Bit 4: UART frame error. The logic 0 (space) was read when the first stop bit was expected and it

should be logic 1 (parity always one)

 Bit 5: UART parity error. The parity bit read is not correct according to the calculated one

 Bit 6: UART overrun error. Data was lost during the FIFO UART reading. New characters were

received before the later ones were removed. This error will only be indicated in the first

character read after the overrun error indication. This means some old data were lost

 Bit 7: RX line overrun error. This character was written when the RX line was completed,

overwriting the unread characters

Two bytes for the timestamp signal (RX_TIMESTAMP : WORD): Indicates the silence time,

within the 0 to 65535 interval, using 10us as base. It saturates in 655.35ms if the silence time is

higher than 65535 units. The RX_TIMESTAMP of a character measures the time from a reference
which can be any of the three options below:

 On most of the cases, the end of the later character

 Serial port configuration

 The end of serial communication using the SERIAL_TX FB, in other words, when the last

character is sent on line

Besides measuring the silence between characters, the RX_TIMESTAMP is also important as it
measures the silence time of the last character on the RX line.

The silence measuring is important for the correct protocol implementation, as MODBUS RTU, for

example. This protocol specifies an inter-frame greater than 3.5 characters and an inter-byte less than
1.5 characters.

Data Bits: The serial interfaces Data Bits configuration limits the Stop Bits and Communication

Parity fields. Therefore, the stop bits number and the parity method will vary according to the data

bits number. Table 4-9 shows the allowed configurations for COM 1 interfaces of the NX3010,
NX3020 and NX3030 CPUs:

Data Bits Stop Bits Parity

5 1,1.5
NO PARITY, ODD, EVEN, PARITY ALWAYS ONE,

PARITY ALWAYS ZERO

6 1, 2
NO PARITY, ODD, EVEN, PARITY ALWAYS ONE,

PARITY ALWAYS ZERO

7 1, 2
NO PARITY, ODD, EVEN, PARITY ALWAYS ONE,
PARITY ALWAYS ZERO

8 1, 2
NO PARITY, ODD, EVEN, PARITY ALWAYS ONE,

PARITY ALWAYS ZERO

Table 4-9. Specific Configurations

4. Configuration

 52

Advanced Configurations

The advanced configurations are related to the serial communication control, in other words, when it

is necessary the utilization of a more accurate data transmission and reception control.

Configuration Description Default Options

Advanced Port Parameters

Handshake

Executes the request

control for a command
transmission through RS-
232C interface.

RTS OFF

- RTS: Enabled at the
beginning of transmission and

restarted, as fast as possible
after the end of it. E.g. The
RS-232/RS-485 external

converter control.

- RTS OFF: Always disabled.

- RTS ON: Always enabled.

- RTS/CTS: In case the CTS is

disabled, the RTS is enabled.
Therefore the CTS enabling
must be waited until the

transmission can start again
and the RTS restarted, as fast
as possible, at the end of

transmission. E.g. the radio
modems control using the
same modem signal.

- Manual RTS: the user is
responsible for all control

signals.

UART RX

Threshold

Bytes quantity which

must be received to
generate a new UART

interruption. Low values
make the TIMESTAMP
more precise when the

EXTENDED MODE is
used and minimizes the
overrun errors. However,

values too low may
cause several
interruptions delaying the

CPU.

8 1, 4, 8 and 14

Serial Events

RX on TX

When true, all received

bytes during transmission
will be discharged

instead of going to the
RX line. Used to disable
the full-duplex operation

of the RS-232C interface.

Disabled

- Enabled: Configuration
enabled

- Disabled: Configuration
disabled

RX DCD Event
When true, generates an
external event due to

DCD signal change.

Enabled

- Enabled: Configuration

enabled

- Disabled: Configuration

disabled

RX CTS Event
When true, generates an
external event due to

CTS signal change.

Enabled

- Enabled: Configuration

enabled

- Disabled: Configuration
disabled

Table 4-10. RS-232 Standard Serial Advanced Configurations

Notes:

RX in TX: This advanced parameter is valid for RS-232C settings and RS-422.

Event RX DCD: External events such as the DCD signal COM 1 of the CPUs NX3010, NX3020,
NX3030, may be associated only to tasks of custom project profile, for further information, please

see the MasterTool IEC XE User Manual – MU299609.

4. Configuration

 53

Event RX CTS: External events such as the CTS signal COM 1, may be associated only to tasks of ,

custom project profile, for further information, please see the MasterTool IEC XE User Manual –

MU299609.

COM1 (NX3004/NX3005) and COM 2 (NX3010/NX3020/NX3030)

The COM 1 (NX3004 and NX3005) and COM 2 (NX3010, NX3020 and NX3030) communication

interface is composed by a DB9 female connector for the RS-422 and RS-485 patterns. It allows the
point to point or network communication in the open protocols MODBUS RTU slave or MODBUS

RTU master.

When using the MODBUS master / slave protocol, some of these parameters (such as Serial Mode,

Data Bits, RX Threshold and Events Serial) are automatically adjusted by MasterTool tool for the
correct operation of this protocol.

The parameters which must be configured for the proper functioning of the application are described

below:

Configuration Description Default Options

Serial Type
Serial channel
configuration

RS-485 RS-422 and RS-485

Baud Rate
Serial communication port

speed configuration
115200

200, 300, 600, 1200, 1800,

2400, 4800, 9600, 19200,
38400, 57600, 115200 bps

Parity
Serial port parity

configuration
None

Odd

Even

Parity Always One
Parity Always Zero
No parity

Data Bits
Sets the data bits quantity

in each serial
communication character

8 5, 6, 7 and 8

Stop Bits
Sets the serial port stop
bits

1 1, 1.5 and 2

Serial Mode
Sets the serial port

operation mode
Normal Mode

- Extended Mode: Extended

operation mode which
delivers information regarding
the received data frame (see

note on COM 1 section)

- Normal Mode: Serial

communication normal
operation mode

Table 4-11. RS-485/RS-422 Standard Serial Configurations

The serial interfaces Data Bits configuration limits the Stop Bits and Communication Parity fields.

Therefore, the number of stop bits and the parity method will vary according to the data bits number.

Table 4-12 shows the allowed configurations for COM 1(NX3004 and NX3005) and COM 2
(NX3010, NX3020 and NX3030) interfaces.

Data Bits Stop Bits Parity

5 1, 1.5
NO PARITY, ODD, EVEN, PARITY ALWAYS AONE,

PARITY ALWAYS ZERO

6 1, 2
NO PARITY, ODD, EVEN, PARITY ALWAYS AONE,

PARITY ALWAYS ZERO

7 1, 2
NO PARITY, ODD, EVEN, PARITY ALWAYS AONE,
PARITY ALWAYS ZERO

8 1, 2
NO PARITY, ODD, EVEN, PARITY ALWAYS AONE,

PARITY ALWAYS ZERO

Table 4-12. Specific Configurations

4. Configuration

 54

Advanced Configurations

The advanced configurations are related to the serial communication control, in other words, when it

is necessary the utilization of a more accurate data transmission and reception control.

Configuration Description Default Options

UART RX

Threshold

Bytes quantity which must be received for a
new UART interruption to be generated. Low

values make the TIMESTAMP more precise
when the EXTENDED MODE is used and
minimizes the overrun errors. However, values

too low may cause several interruptions
delaying the CPU.

8 1, 4, 8 and 14

Table 4-13. RS-485/RS-422 Standard Serial Advanced Configurations

Ethernet Interfaces Configuration

The Nexto CPUs can provide up to two Ethernet interfaces locations, NET 1 and NET 2. The

NX3004, NX3005 and NX3010 CPUs has only the NET1 interface and the CPUs NX3020 and

NX3030 have NET 1 and NET 2. In addition to the local Ethernet interfaces, the Nexto Series also
provides remote Ethernet interfaces by including the NX5000 module. The NX5000 modules have

only the NET 1 interface.

Local Ethernet Interfaces

NET 1

The NET 1 interface is composed by a RJ45 communication connector pattern 10/100Base-TX. It

allows the point to point or network communication in the following open protocols, for example:
MODBUS TCP Client, MODBUS RTU via TCP Client, MODBUS TCP Server and MODBUS RTU

via TCP Server.

The parameters which must be configured for the proper functioning of the application are described

below:

Configuration Description Default Options

IP Address
IP address of the controller in

the Ethernet bus.
192.168.15.1

1.0.0.1 to

223.255.255.254

Sub network
Mask

Subnet mask of the controller
in the Ethernet bus.

255.255.255.0
128.0.0.0 to

255.255.255.252

Gateway Address
Controller Gateway address

in the Ethernet bus.
192.168.15.253

1.0.0.1 to

223.255.255.254

Table 4-14. NET 1 Configuration

NET 2

The NET 2 interface is composed by a RJ45 communication connector pattern 10/100Base-TX. It
allows the point to point or network communication in the following open protocols: MODBUS TCP

Client, MODBUS RTU via TCP Client, MODBUS TCP Server and MODBUS RTU via TCP Server.

The parameters which must be configured for the proper functioning of the application are described
below:

4. Configuration

 55

Configuration Description Default Options

IP Address
IP address of the controller in

the Ethernet bus.
192.168.16.1

1.0.0.1 to

223.255.255.254

Sub network

Mask

Sub-net mask of the

controller in the Ethernet bus.
255.255.255.0

128.0.0.0 to

255.255.255.252

Gateway Address
Gateway address of the

controller in the Ethernet bus.
192.168.16.253

1.0.0.1 to
223.255.255.254

Table 4-15. NET 2 Configuration

ATTENTION:
It is not possible to configure the two local Ethernet interfaces in the same sub-net. This kind of

configuration is blocked in MasterTool. This way, each Ethernet interface must be configured in a

different Subnetwork.

Remote Ethernet Interfaces

NET 1

NET 1 is an interface composed by an RJ45 communication connector pattern 10/100Base-TX. It

allows point-to-point or network communication in the following open protocols: MODBUS TCP
Client, MODBUS RTU via TCP Client, MODBUS TCP Server and MODBUS RTU via TCP Server.

The parameters which must be configured for the proper functioning of the application are described

below:

Configuration Description Default Value Options

IP Address
IP address of the Controller in

the Ethernet bus
192.168.xx.68

1.0.0.1 to
223.255.255.254

Sub network

Mask

Sub net mask of the Controller

in the Ethernet bus
255.255.255.0

128.0.0.0 to

255.255.255.252

Gateway Address
Gateway address of the

Controller in the Ethernet bus
192.168.xx.253

1.0.0.1 to

223.255.255.254

Table 4-16. Remote NET 1 Configurations

Reserved TCP Ports

The following TCP ports of the Ethernet interfaces, both local and remote, are used by CPUs

services, so they are reserved and cannot be used by the user: 80, 161, 8080, 1217, 1740, 1741,
1742,1743 and 11740.

NX5000 Module Configuration

The NX5000 modules can be inserted in the project to increase the number of Ethernet interfaces if

the local CPU interfaces are not enough. Only the NX3005, NX3020 and NX3030 CPUs support the
NX5000 module.

The Ethernet channels of the NX5000 modules can be used individually, or arranged in NIC Teaming

pairs. NIC Teaming pairs are used to provide redundant Ethernet channels.

An example of typical application for NX5000 module is the setting of a redundant HSDN (High
Speed Deterministic Network) for communication between different PLCs. Through this network,

several PLCs can exchange messages in an entirely segregated network to ensure determinism and

fast communication. Moreover, setting up this network as redundant with NIC Teaming pairs,
provides an excellent availability. To build a redundant HSDN, two NX5000 modules must be

inserted. Figure 4-9 shows an example of redundant HSDN using two NX5000 modules.

4. Configuration

 56

The Figure 4-9 also shows an example with one NX5000 module used isolated (without NIC

Teaming redundancy), inserted to the right of the other modules.

Figure 4-9. Simple and Redundant Ethernet Networks Using NX5000

The two first NX5000 modules from the backplane rack make up a redundant NIC Teaming pair
interconnected in two different switches (Ethernet HSDN A and Ethernet HSDN B). At some point,

these two switches must be interconnected so that there is connection between the two NIC Teaming

ports and greater availability (against double failures).

Such Ethernet architectures enable excellent availability against failures on Ethernet ports, cables and

switches.

A set of two Ethernet ports forming a NIC Teaming pair presents a unique IP address connected to
the pair of ports. Thus, a client such as a SCADA or MasterTool connected to a server on a PLC does

not need to concern about changing the IP address in case there is a failure in some of the NIC

Teaming ports.

Diagnostics indicate eventual failures that may arise in any of the NIC Teaming pair ports.

ATTENTION:

Both NX3020 and NX3030 CPUs support the NX5000 module and can put two NX5000 together as

an NIC Teaming pair.

Using the NX3020 CPU it is possible to insert up to two NX5000 modules in the project. By using
the NX3030 CPU it is possible to insert up to six. If it is used a CPU NX3020 or NX3030, it is

possible to configure a NIC Teaming pair, using up to the maximum number of modules allowed for

each CPU, such as the architecture shown in the Figure 4-9, where we have a NIC Teaming pair and
one independent Ethernet interface, using three modules.

MasterTool SCADAs

Other HSDN
CPUs

(Normally
Redundant)

N
X
8

0
0
0

N
X
3

0
3
0

N
X
5

0
0
0

N
X
5

0
0
0

N
X
5

0
0
0

Non-redundant Ethernet

Ethernet HSDN A

Ethernet HSDN B

Non-redundant Ethernet

4. Configuration

 57

In order to put together two NX5000 modules as a redundant pair, these two modules must necessary

occupy adjacent positions on the backplane rack and the checkbox “Redundancy of Communication”

from the module on the left must be selected, as show in the figure above Figure 4-10.

By doing this, the parameters edition of the module on the right is blocked. The parameters edited in

the module inserted on the left get common for the two modules.

On the other hand, clearing the “Redundant Communication” checkbox from the module on the left
causes the separation of the modules, which return to behave as individual modules without

redundant NIC Teaming.

Figure 4-10. NX5000 Redundancy Parameter

Protocols Configuration

Independent of the protocols used in each application, the Nexto Series CPUs possess some

maximum limits for each CPU model. There are basically two different types of communication
protocols: symbolic and direct representation mappings. The maximum limit of mappings as well as

the maximum protocol quantity (instances) is defined on Table 4-17:

NX3004 NX3005 NX3010 NX3020 NX3030

Mapped Points 20480 20480 20480 20480 20480

Symbolic MODBUS Mappings 5120 5120 5120 5120 5120

MODBUS Mapping/requests (direct
representation/symbolic, respectively)

512 512 512 512 512

NETs – Clients or Servers instances 4 4 4 8 16

COM (n) – Master or Slave instances 1 1 1 1 1

Table 4-17. Limits of the protocols by CPU

Notes:

Mapped Points: Each variable or item of a given data type is assumed to be a mapping. The same is
considered for each position of the ARRAY type. This means that if a simple variable is declared, it

will be considered a mapping and if an ARRAY type is declared, the count will be equal to the size

of the declared ARRAY. The amount of mappings increments by one when there is a simple type of
variable being declared independent of the size of the given type. Then, mapping a variable of INT

4. Configuration

 58

type (16-bit) in a Holding Register of symbolic Modbus drivers or a variable of type LINT (64-bit) in

four Holding Register of symbolic Modbus drivers is accounted for as just a mapping.

Symbolic MODBUS Mappings: A mapping is a relationship between an application intern variable
and an application protocol object. The limit value for the project mappings corresponds to the sum

of all the mappings made within the instances of communication protocols and their respective

devices.

MODBUS Mapping/requisitions (directly representation/symbolic, respectively): MODBUS

mapping limits (lines) for direct representation and requisitions for MODBUS by symbolic mapping.

ATTENTION:

In cases where the two types of protocol are used together, as one type is used the capacity of the
other decreases. For example, if 10240 symbolic mappings are used, it will only be possible to use

256 mappings by direct representation. The ratio between the two types of mapping is of 40

symbolic mappings to each mapping by direct representation.

NETs: Clients or Servers instances: The maximum value defined above is distributed between all
Ethernet interfaces of the system, in other words, it includes the expansion modules when they are

applied. Examples for this type of task are the MODBUS protocol instances.

COM (n): Master or Slave instances: The “n” represents the serial interfaces number, in other words,
even with the expansion modules, the value in the table will be the maximum limit per interface.

Examples for this task type are the MODBUS protocol instances.

The maximum number of instances competes between themselves, that is, between the MODBUS

RTU Master and Slave there is only one instance that can be configured per interface on any CPU
model. Between Ethernet MODBUS Client and server only four (NX3010) eight (NX3020) or

sixteen (NX3030) instances can be configured per interface.

The limitations of the MODBUS protocol for Direct Representation and symbolic mapping for the
CPUs can be seen in Table 4-18 and Table 4-19, respectively.

Limitations
MODBUS RTU

Master

MODBUS RTU

Slave

MODBUS Ethernet

Client

MODBUS Ethernet

Server

Maximum number
of mappings per

instance

128 32 128 32

Maximum number

of devices
64 1 64 1

Maximum number
of mappings per

device

32 32 32 32

Maximum number

of simultaneous
requests per
instance

- - 128 64

Maximum number

of simultaneous
requests per
device

- - 8 64

Table 4-18. MODBUS Protocol Limitations for Direct Representation

Notes:

Devices per instance:

 Master or Client Protocols: number of slaves or server devices supported by each Master or

Slave protocol instance.

 MODBUS RTU Slave Protocol: the limit
(1)

 informed relates to serial interfaces that do not

allow a Slave to stablish communication through the same serial interface, simultaneously, with
more than one Master device. It’s not necessary, nor is it possible to declare or configure the

4. Configuration

 59

Master device in the instance of the MODBUS RTU slave protocol. The master device will have

access to all the mappings made directly on the instance of MODBUS RTU slave protocol.

 MODBUS RTU Server Protocol: the limit
(2)

 informed relates to the Ethernet interfaces, which

limit the number of connections that can be established with other devices through a single
Ethernet interface. It is not necessary, nor is it possible to declare or configure Clients devices in

the instance of the MODBUS Server protocol. All Clients devices will have access to all the

mappings made directly in the instance of the MODBUS Server protocol.

Mappings per device: The maximum number of mappings per device, despite being listed above, is

also limited by the protocol maximum number of mappings. Also to be considered the maximum

CPU mappings as in Table 4-17.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted
by each Client protocol instance or that can be received simultaneously by each Server protocol

instance. MODBUS RTU protocol instances, Master or Slave, do not support simultaneous requests.

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted to
each MODBUS Server device, or may be received simultaneously by each MODBUS client device.

MODBUS RTU devices, Master or Slave do not support simultaneous requests.

Limitations
MODBUS RTU

Master

MODBUS RTU

Slave

MODBUS

Ethernet Client

MODBUS

Ethernet Server

Devices per

instance
64 1

(1)
 64 64

(2)

Requests per
device

32 - 32 -

Simultaneous

requests per
instance

- - 128 64

Simultaneous
requests per

device

- - 8 64

Table 4-19. MODBUS Protocol Limitations for Symbolic Mappings

Notes:

Devices per instance:

 Master or Client Protocol: Number of slave or server devices supported by each Master or

Client protocol instance.

 Slave MODBUS RTU Protocol: the limit (1) informed relates to serial interfaces that do not

allow a Slave to establish communication through the same serial interface, simultaneously, with
more than one Master device. It’s not necessary, nor is it possible to declare or configure the

Master device in the instance of the MODBUS RTU slave protocol. The master device will have

access to all the mappings made directly on the instance of MODBUS RTU slave protocol.

 MODBUS RTU Server Protocol: the limit
(2)

 informed relates to the Ethernet interfaces, which

limit the amount of connections that can be established with other devices through a single
Ethernet interface. It is not necessary, nor is it possible to declare or configure Clients devices in

the instance of the MODBUS Server protocol. All Clients devices will have access to all the

mappings made directly in the instance of the MODBUS Server protocol.

Requests by device: Number of requests, such as reading or writing holding registers, that can be

configured for each of the devices (slaves or servers) from Master or Client protocols instances. This

parameter does not apply to instances of Slave or Server protocols.

Simultaneous Requests per Instance: Number of requests that can be simultaneously transmitted
by each client protocol instance or that can be received simultaneously by each server protocol

instance. MODBUS RTU protocol instances, Master or Slave, do not support simultaneous requests.

4. Configuration

 60

Simultaneous Requests per Device: Number of requests that can be simultaneously transmitted for

each MODBUS server device, or may be received simultaneously from each MODBUS client

device. MODBUS RTU devices, Master or Slave do not support simultaneous requests.

ATTENTION:

Communication drivers for symbolic mappings are available only from 1.3.0.20 version of Nexto

Series CPUs. Similarly to use this feature is required MasterTool IEC XE version 1.40 or later.

Protocol Behavior x CPU State

Table 4-20 shows in detail the behavior of each configurable protocol in Nexto Series CPUs in every

state of operation.

Protocol Type

CPU operational state

STOP RUN

After download,

before
application

starts

After the

application
goes to

STOP
(PAUSE)

After an
exception

Non
redundant

or Active

Redundant
in Stand-by

After a
breakpoint

in MainPrg

MODBUS
Slave/Server

Master/Client

SOE

(DNP3)
Outstation

EtherCAT Master NA

OPC Server

SNTP Client

HTTP Server

SNMP Agent

Table 4-20. Protocol Behavior x CPU State

Notes:

Symbol : Protocol remains active and operating normally.

Symbol :Protocol is disabled.

EtherCAT: The tests were performed using MainTask as EtherCAT bus task. If another task is used,

the protocol will remain active when there’s a breakpoint in MainPrg. EtherCAT protocol is not

available for CPUs NX3004, NX3005 and NX3010, neither for redundant NX3030. For further
information on EtherCAT protocol, consult MasterTool IEC XE User Manual MT8500 - MU299609.

SOE: Sequence of Events protocol (SOE) is not available for NX3004, NX3005 and NX3010 CPU

models.

MODBUS RTU MASTER

This protocol is available for the Nexto Series CPUs in its serial channels. By selecting this option at

MasterTool IEC XE, the CPU becomes MODBUS communication master, allowing the access to
other devices with the same protocol, when it is in the execution mode (Run Mode).

There are two configuration modes for this protocol. One makes use of Direct Representation (% Q),

in which the variables are defined by its address. The other, called Symbolic Mapping has the

variables defined by its name:

Regardless of the configuration mode, the steps to insert a protocol instance and configure the serial

interface are the same. The procedure to insert a protocol instance is found in detail in the

MasterTool IEC XE User Manual - MU299609 or in the chapter Inserting a Protocol Instance. The
remaining configuration steps are described below for each mode.

4. Configuration

 61

 Add the MODBUS RTU Master Protocol instance to the serial channel COM 1 or COM 2 (or

both, in case of two communication networks). To execute this procedure, see Inserting a

Protocol Instance chapter.

 Configure the serial interface, choosing the transmission speed, the RTS/CTS signals behavior,

the parity, the channel stop bits, among others configurations by a double click on the COM 1 or
COM 2 serial channel.

 See Configuration - Serial Interfaces Configuration chapter.

MODBUS Master Protocol Configuration by Symbolic Mapping

To configure this protocol using symbolic mapping, you must perform the following steps:

 Configure the general parameters of the MODBUS Master protocol, like: transmission delay

times and minimum interframe as in Figure 4-11.

 Add and configure devices via the General Parameters tab, defining the slave address,

communication time-out and number of communication retries as can be seen in Figure 4-12.

 Add and configure the MODBUS mappings on Mappings tab as Figure 4-13, specifying the

variable name, data type, and the data initial address, the data size and range are filled

automatically.

 Add and configure the MODBUS requests as presented in Figure 4-14, specifying the function,

the scan time of the request, the starting address (read/write), the data size (read/write) and

generate diagnostic variables and disabling the request via the buttons at the bottom of the

window.

MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration

The general parameters, found on the MODBUS protocol initial screen (Figure 4-11), are defined as:

Figure 4-11. MODBUS RTU Master Configuration Screen

Configuration Description Default Options

Send Delay (ms)
Delay for the answer
transmission

0 0 to 65535

Minimum

Interframe (chars)

Minimum silence time

between different
frames

3.5 3.5 a 100.0

Table 4-21. MODBUS RTU Master General Configurations

Notes:

Send Delay: The answer to a MODBUS protocol may cause problems in certain moments, as in the

RS-485 interface or other half-duplex. Sometimes there is a delay between the slave answer time and
the physical line silence (slave delay to put RTS in zero and put the RS-485 in high impedance state).

To solve this problem, the master can wait the determined time in this field before sending the new

request. Otherwise, the first bytes transmitted by the master could be lost.

Minimum Interframe: The MODBUS standard defines this time as 3.5 characters, but this

parameter is configurable in order to attend the devices which do not follow the standard.

The MODBUS protocol diagnostics and commands configured, either by symbolic mapping or direct

representation, are stored in T_DIAG_MODBUS_RTU_MASTER_1 variables. For the direct

4. Configuration

 62

representation mapping, they are also in 4 bytes and 8 words which are described in Table 4-22

(where “n” is the configured value in the %Q Initial Address of Diagnostic Area field).

Direct

Representation
Variable

Diagnostic Variable

T_DIAG_MODBUS_RTU_MASTER_1.*
Size Description

Diagnostics Bits:

%QX(n).0

tDiag.*

bRunning BIT The master is running.

%QX(n).1 bNotRunning BIT
The master is not running (see bit:

bInterruptedByCommand).

%QX(n).2 bInterruptedByCommand BIT
The bit bNotRunning was enabled as
the master was interrupted by the user

through command bits.

%QX(n).3 bConfigFailure BIT Discontinued diagnosis

%QX(n).4 bRXFailure BIT Discontinued diagnosis

%QX(n).5 bTXFailure BIT Discontinued diagnosis

%QX(n).6 bModuleFailure BIT
Indicates if there is failure in the

module or the module is not present.

%QX(n).7 bDiag_7_reserved BIT Reserved

Error Codes:

%QB(n+1) eErrorCode
SERIAL_STATUS

(BYTE)

0: there are no errors

1: invalid serial port

2: invalid serial port mode

3: invalid baud rate

4: invalid data bits

5: invalid parity

6: invalid stop bits

7: invalid modem signal parameter

8: invalid UART RX Threshold
parameter

9: invalid time-out parameter

10: busy serial port

11: UART hardware error

12: remote hardware error

20: invalid transmission buffer size

21: invalid signal modem method

22: CTS time-out = true

23: CTS time-out = false

24: transmission time-out error

30: invalid reception buffer size

31: reception time-out error

32: flow control configured differently
from manual

33: invalid flow control for the
configured serial port

34: data reception not allowed in
normal mode

35: data reception not allowed in
extended mode

36: DCD interruption not allowed

37: CTS interruption not allowed

38: DSR interruption not allowed

39: serial port not configured

50: internal error in the serial port

Command bits, automatically initialized:

%QX(n+2).0

tCommand.*

bStop BIT Stop master

%QX(n+2).1 bRestart BIT Restart master

%QX(n+2).2 bResetCounter BIT
Restart diagnostics statistics

(counters)

%QX(n+2).3 bDiag_19_reserved BIT Reserved

4. Configuration

 63

Direct

Representation
Variable

Diagnostic Variable
T_DIAG_MODBUS_RTU_MASTER_1.*

Size Description

%QX(n+2).4 bDiag_20_reserved BIT Reserved

%QX(n+2).5 bDiag_21_reserved BIT Reserved

%QX(n+2).6 bDiag_22_reserved BIT Reserved

%QX(n+2).7 bDiag_23_reserved BIT Reserved

%QB(n+3) byDiag_03_reserved BYTE Reserved

Communication Statistics:

%QW(n+4)

tStat.*

wTXRequests WORD
Counter of request transmitted by the

master (0 to 65535)

%QW(n+6) wRXNormalResponses WORD
Counter of normal responses received

by the master (0 to 65535)

%QW(n+8) wRXExceptionResponses WORD

Counter of responses with exception

codes received by the master (0 to
65535)

%QW(n+10) wRXIllegalResponses WORD

Counter of illegal responses received

by master – invalid syntax, not enough
received bytes, invalid CRC – (0 to
65535)

%QW(n+12) wRXOverrunErrors WORD
Counter of overrun errors during

reception - UART FIFO or RX line – (0
to 65535)

%QW(n+14) wRXIncompleteFrames WORD
Counter of answers with construction
errors, parity or failure during reception

(0 to 65535)

%QW(n+16) wCTSTimeOutErrors WORD

Counter of CTS time-out error, using

RTS/CTS handshake, during
transmission (0 to 65535)

%QW(n+18)

WORD Reserved

Table 4-22. MODBUS RTU Master Diagnostics

Note:

Counters: All MODBUS RTU Master diagnostics counters return to zero when the limit value

65535 is exceeded.

Devices Configuration – Symbolic Mapping configuration

The slave devices configuration, shown on Figure 4-12, follows the parameters below:

Figure 4-12. Device General Parameters Settings

4. Configuration

 64

Configuration Description Default Options

Slave Address MODBUS slave address 1 0 to 255

Communication

Time-out (ms)

Defines the application

level time-out
3000 10 to 65535

Maximum Number
of Retries

Defines the numbers of

retries before reporting a
communication error

2 0 to 9

Table 4-23. Device Configurations

Notes:

Slave Address: According to the MODBUS standard, the valid slave addresses are from 0 to 247,

where the addresses from 248 to 255 are reserved. When the master sends a writing command with

the address configured as zero, it is making broadcast requests in the network.

Communication Time-out: The communication time-out is the time that the master waits for a

response from the slave to the request. For a MODBUS RTU master device it must be taken into

account at least the following system variables: the time it takes the slave to transmit the frame
(according to the baud rate), the time the slave takes to process the request and the response sending

delay if configured in the slave. It is recommended that the time-out is equal to or greater than the

time to transmit the frame plus the delay of sending the response and twice the processing time of the

request. For more information, see Protocols Configuration-Communication Performance chapter.

Maximum number of retries: Sets the number of retries before reporting a communication error.

For example, if the slave does not respond to a request and the master is set to send three retries, the

error counter number is incremented by one unit when the execution of these three retries. After the
increase of the communication error trying to process restarts and if the number of retries is reached

again, new error will increment the counter..

Mappings Configuration – Symbolic Mapping Settings

The MODBUS relations configuration, showed on Figure 4-13, follows the parameters described on
Table 4-24:

Figure 4-13. MODBUS Data Mappings Screen

4. Configuration

 65

Configuration Description Default Options

Value Variable Symbolic variable name -
Name of a variable declared in a program or

GVL

Data Type MODBUS data type -

Write Coil (1 bit)

Read Coil (1 bit)

Write Holding Register (16 bits)

Read Holding Register (16 bits)

Holding Register – AND Mask (16 bits)

Holding Register – OR Mask (16 bits)

Input Register (16 bits)

Input Status (1 bit)

Data Initial

Address

Initial address of the MODBUS

data
- 1 to 65536

Data Size Size of the MODBUS data - 1 to 65536

Data Range
The address range of configured
data

- -

Table 4-24. MODBUS Mappings Settings

Notes:

Value Variable: this field is used to specify a symbolic variable in MODBUS relation.

Data type: this field is used to specify the data type used in the MODBUS relation.

Data Type Size [bits] Description

Writing Coil 1 Writing digital output

Reading Coil 1 Reading digital output

Writing Holding Register 16 Writing analog output

Reading Holding Register 16 Reading analog output

Holding Register with AND mask 16
Analog output which can be read or written
with AND mask.

Holding Register with OR mask 16
Analog output which can be read or written
with OR mask.

Input Register 16 Analog input which can be only read.

Input Status 1 Digital input which can be only read.

Table 4-25. Data Types Supported in MODBUS RTU Master

Data Initial Address: data initial address of a MODBUS mapping.

Data Size: the size value specifies the maximum amount of data that a MODBUS interface can

access, from the initial address. Thus, to read a continuous address range, it is necessary that all

addresses are declared in a single interface. This field varies with the MODBUS data type
configured.

Data Range: this field shows the user the memory address range used by the MODBUS interface.

Requests Configuration –Symbolic Mapping Settings

The configuration of the MODBUS requests, viewed in Figure 4-14, follow the parameters described

in Table 4-26:

4. Configuration

 66

Figure 4-14. Data Requests Screen MODBUS Master

Configuration Description
Default

Value
Options

Function Code MODBUS function type -

01 – Read Coils

02 – Read Input Status

03 – Read Holding Registers

04 – Read Input Registers

05 – Write Coil

06 – Write Register

15 – Write Multiple Coils

16 – Write Multiple Registers

22 – Register Write Mask

23 – Read/Write Multiple Registers

Scan (ms) Communication period (ms) 100 0 to 3600000

Initial Address of
the Read Data

Initial address of the
MODBUS read data

- 1 to 65536

Read Data Size Size of MODBUS Read data - Depends on the function used

Read Data Range
MODBUS Read data address

range
- 0 to 2147483646

Initial Address of

the Write Data

Initial address of the

MODBUS write data
- 1 to 65536

Write Data Size Size of MODBUS Write data - Depends on the function used

Write Data Range
MODBUS Write data address

range
- 0 to 2147483647

Diagnostic
Variable

Diagnostic variable name -
Name of a variable declared in a program
or GVL

Disabling Variable
Variable used to disable

MODBUS relation
-

Field for symbolic variable used to disable,

individually, MODBUS requests
configured. This variable must be of type
BOOL. The variable can be simple or array

element and can be in structures.

Table 4-26. MODBUS Master Relations Configuration

4. Configuration

 67

Notes:

Setting: the number of factory default settings, and the values for the column Options, may vary

according to the data type and MODBUS function (FC).

Function Code: MODBUS (FC) functions available are the following:

Function Type
Code

Description
DEC HEX

Access to Variables

1 0x01 Read coils (FC 01)

2 0x02 Read input status (FC 02)

3 0x03 Read holding registers (FC 03)

4 0x04 Read input registers (FC 04)

5 0x05 Write coil (FC 05)

6 0x06 Write holding register (FC 06)

15 0x0F Write multiple coils (FC 15)

16 0x10 Write holding registers (FC 16)

22 0x16 Register write mask (FC 22)

23 0x17 Read/Write holding registers (FC 23)

Table 4-27. MODBUS Functions Supported by Nexto CPUs

Scan: this parameter indicates how often the communication set for this request must be performed.

By the end of a communication will be awaited a time equal to the value configured in the field scan

and after that, a new communication will be executed.

Initial Address of the Read Data: field for the initial address of the MODBUS read data.

Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on

the MODBUS function (FC) used as below:

 Read Coils (FC 1): 2000

 Read Input Status (FC 2): 2000

 Read Holding Registers (FC 3): 125

 Read Input Registers (FC 4): 125

 Read/Write Holding Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The
initial address, along with the read data size will result in the range of read data for each request.

Initial Address of the Write Data: field for the initial address of the MODBUS write data.

Write Data Size: the minimum value for the write data size is 1 and the maximum value depends on
the MODBUS function (FC) used as below:

 Write Single Coil (FC 5): 1

 Write Single Holding Registers (FC 6): 1

 Write Multiple Coils (FC 15): 1968

 Write Holding Registers (FC 16): 123

 Register Write Mask (FC 22): 1

 Read/Write Holding Registers (FC 23): 121

Write Data Range: this field shows the MODBUS write data range configured for each request. The

initial address, along with the read data size will result in the range of write data for each request.

Diagnostic Variable: The MODBUS request diagnostics configured by symbolic mapping or by

direct representation, are stored in variables of type T_DIAG_MODBUS_RTU_MAPPING_1 and

the mapping by direct representation are in 4-byte and 2-word, which are described in Table 4-28 (n

is the value configured in the Diagnostic Initial Address field in %Q).

4. Configuration

 68

Direct

Representation
Variable

Diagnostic variable of type

T_DIAG_MODBUS_RTU_MAPPING_1.*
Size Description

Communication status bits:

%QX(n).0

byStatus.*

bCommIdle BIT
Communication idle

(waiting to be executed)

%QX(n).1 bCommExecuting BIT Active communication

%QX(n).2 bCommPostponed BIT

Communication delayed,

because the maximum number
of concurrent requests was

reached. Deferred
communications will be carried
out in the same sequence in

which they were ordered to
avoid indeterminacy. The time
spent in this State is not counted

for the purposes of time-out. The
bCommIdle and
bCommExecuting bits are false

when the bCommPostponed bit
is true.

%QX(n).3
bCommDisabled BIT

Communication disabled. The
bCommIdle bit is restarted in this

condition.

%QX(n).4

bCommOk BIT

Communication terminated

previously was held
successfully.

%QX(n).5
bCommError BIT

Communication terminated
previously had an error. Check

error code.

%QX(n).6
bCommAborted BIT

Not used in MODBUS RTU

Master

%QX(n).7
bDiag_7_reserved BIT Reserved

Last error code (enabled when bCommError = true):

%QB(n+1) eLastErrorCode
MASTER_ERROR_CODE

(BYTE)

Informs the possible cause of

the last error in the MODBUS
mapping. Consult Table 4-29 for
further details.

Last exception code received by master:

%QB(n+2) eLastExceptionCode
MODBUS_EXCEPTION

(BYTE)

NO_EXCEPTION (0)

FUNCTION_NOT_SUPPORTED
(1)

MAPPING_NOT_FOUND (2)

ILLEGAL_VALUE (3)

ACCESS_DENIED (128)*

MAPPING_DISABLED (129)*

IGNORE_FRAME (255)*

Communication statistics:

%QB(n+3) byDiag_3_reserved BYTE Reserved

%QW(n+4) wCommCounter WORD

Finished communications

counter (with or without errors).
The user can test when

communication has finished
testing the variation of this
counter. When the value 65535

is reached, the counter returns
to zero.

%QW(n+6) wCommErrorCounter WORD

Finished communications

counter (with errors). When the
value 65535 is reached, the

counter returns to zero.

Table 4-28. MODBUS Relations Diagnostics

4. Configuration

 69

Exception Codes: The exception codes presented in this field are values returned by the slave. The

definitions of the exception codes 128, 129 and 255 presented in the table are valid only when using

Altus slaves. Slaves from other manufacturers might use other definitions for each code.

Disabling Variable: variable of Boolean type used to disable, individually, MODBUS requests

configured on request tab via button at the bottom of the window. The request is disabled when the

variable, corresponding to the request, is equal to 1, otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS

communication can be consulted below:

Code Enumerable Description

1 ERR_EXCEPTION
Reply is in an exception code (see eLastExceptionCode =

Exception Code).

2 ERR_CRC Reply with invalid CRC.

3 ERR_ADDRESS
MODBUS address not found. The address that replied the

request was different than expected.

4 ERR_FUNCTION
Invalid function code. The reply’s function code was different
than expected.

5 ERR_FRAME_DATA_COUNT The amount of data in the reply was different than expected.

7 ERR_NOT_ECHO The reply is not an echo of the request (FC 5 and 6).

8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).

9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

21 ERR_SEND Error during transmission stage.

22 ERR_RECEIVE Error during reception stage.

41 ERR_SEND_TIMEOUT Application level time-out during transmission.

42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.

43 ERR_CTS_OFF_TIMEOUT Timeout while waiting CTS = false in transmission.

44 ERR_CTS_ON_TIMEOUT Timeout while waiting CTS = true in transmission.

128 NO_ERROR No error since startup.

Table 4-29. MODBUS Master Relations Error Codes

ATTENTION:

Differently from other application tasks, when a depuration mark in the MainTask is reached, the
task of a Master MODBUS RTU instance and any other MODBUS task will stop running at the

moment that it tries to perform a writing in a memory area. It occurs in order to keep the consistency

of the memory areas data while a MainTask is not running.

MODBUS Master Protocol Configuration for Direct Representation (%Q)

To configure this protocol using direct representation (%Q), the following steps must be performed:

 Configure the general parameters of the MODBUS Master protocol, such as: communication

times and direct representation variables (%Q) to receive diagnostics.

 The descriptions of each configuration are listed below in this chapter.

 Add and configure devices by setting address, direct representation variables (%Q) to disable the

relations, time-outs and number of communication retries.

 Add and configure MODBUS relations, specifying the data type and MODBUS function, time-
outs, direct representation variables (%Q) to receive diagnostics of the relation and other to

receive/write the data, amount of data to be transmitted and relation polling.

The descriptions of each configuration are listed below in this chapter.

General Parameters of MODBUS Master Protocol -setting by Direct Representation (%Q)

The General parameters, found on the home screen of MODBUS protocol configuration (Figure

4-15), are defined as:

4. Configuration

 70

Figure 4-15 MODBUS RTU Master Setup Screen

Direct representation variables (%Q) for the protocol diagnostic:

Configuration Description Default Value Options

Initial Address of
Diagnostics in %Q

Initial address of the
diagnostic variables

- 0 to 2147483628

Size Size of diagnostics area 20 Disabled for editing

Table 4-30. MODBUS RTU Master Configuration

Notes:

Initial Address of Diagnostics in %Q: this field is limited by the size of outputs variables (%Q)

addressable memory of each CPU, which can be found in chapter Technical Description.

Default Value: the factory default value cannot be set to the Initial Address of Diagnostics in %Q

field, because the creation of a Protocol instance may be held at any time on application

development. The MasterTool IEC XE software itself allocate a value, from the range of output

variables of direct representation (%Q), not used yet.

The diagnostics and MODBUS protocol commands are described in Table 4-22.

The communication times of the MODBUS Master protocol, found on the button "Advanced ..." in

the configuration screen are divided into Transmission Delay and Minimum Interframe, further
details are described in section Mappings Configuration – Symbolic Mapping Settings.

4. Configuration

 71

Devices Configuration – Configuration for Direct Representation (%Q)

The configuration of the slave devices, viewed in Figure 4-16, comprises the following parameters:

Figure 4-16. Device Configuration

Configuration Description Default Value Option

Name Name of the instance MODBUS_Device
Identifier, according to

IEC 61131-3

Slave Address
The MODBUS slave

address
1 0 to 255

Communication

Time-out (ms)

Sets the time-out of the

application level
1000 10 to 65535

Maximum Number
of Retries

Sets the number of retries
before reporting a

communication error

2 0 to 9

Mapping Disabling

Initial address used to

disable MODBUS
relations

- 0 to 2147483644

Table 4-31. Device Configuration - MODBUS Master

Notes:

Instance Name: this field is the identifier of the device, which is checked according to IEC 61131-3,

i.e. does not allow spaces, special characters and start with numeral character. It’s limited in 24

characters.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations

configured in Device Mapping space. The relation is disabled when the bit, corresponding to relation,

is equal to 1, otherwise, the mapping is enabled. This field is limited by the size of outputs variables
(%Q) addressable memory of each CPU, which can be found in chapter Technical Description.

Default Value: the factory default value cannot be set to the Disabling Area of Mappings field,

because the creation of a Protocol instance may be held at any time on application development. The
MasterTool IEC XE software itself allocate a value, from the range of output variables of direct

representation (%Q), not used yet.

For further details on the slave address, time-out and maximum number of retries parameters see

notes in section Devices Configuration – Configuration for Direct Representation (%Q).

4. Configuration

 72

Mappings Configuration – Configuration for Direct Representation (%Q)

The MODBUS relations settings, viewed in Figure 4-17 and Figure 4-18, follow the parameters

described in Table 4-32:

Figure 4-17. MODBUS Data Type

Figure 4-18. MODBUS Function

In Table 4-32, the number of factory default settings, and the values for the column options, may
vary according to the data type and MODBUS function (FC).

Configuration Description Default Value Options

Function MODBUS function type Read

Read

Write

Read/Write

Write Mask

Polling (ms) Communication period (ms) 100 0 to 3600000

Mapping Diagnostics

Area

Initial address of the MODBUS relation

diagnostics (%Q)
- 0 to 2147483640

Read Data Start

Address

Initial address of the MODBUS read

data
1 1 to 65536

Read Data Size Number of MODBUS read data -
Depends on the
function used

Read IEC Variable
Initial address of the read variables

(%I)
- 0 to 2147483646

Write Data Start

Address

Initial address of the MODBUS write

data
1 1 to 65536

Write Data Size Number of MODBUS write data -
Depends on the
function used

Write IEC Variable
Initial address of the write variables

(%Q)
- 0 to 2147483647

4. Configuration

 73

Write Mask of IEC

Variables

Initial address of the variables for the

write mask (%Q)
- 0 to 2147483644

Table 4-32. Device Mapping

Notes:

Function: the available data types are detailed in the Table 4-25 and MODBUS functions (CF) are

available in the Table 4-27.

Polling: this parameter indicates how often the communication set for this relation must be executed.

At the end of communication will be awaited a time equal to the configured polling and after, will be

performed a new communication as soon as possible.

Mapping Diagnostics Area: this field is limited by the size of output variables addressable memory
(%Q) at CPU, which can be found in the chapter Technical Description. The configured MODBUS

relations diagnostics are described in Table 4-28.

Read/Write Data Size: details of the data size supported by each function are described in the notes
of the section Configuration of the Relations – Symbolic Mapping Setting.

Read IEC Variable: if the MODBUS data type is Coil or Input Status (1-bit), the initial address of

the IEC reading variables will have the format %IX10.1, for example. However, if the MODBUS
data type is Holding Register or Input Register (16-bit), the initial address of the IEC reading

variables will be %IW. This field is limited by the size of input variables addressable memory (%I) at

CPU, which can be found in the chapter Technical Description.

Write IEC Variable: if the MODBUS data type is Coil, the initial address of the IEC writing
variables will have the format %QX10.1, for example. However, if the MODBUS data type is

Holding Register (16-bit), the initial address of the IEC writing variables will be %QW. This field is

limited by the size of output variables addressable memory (%Q) at CPU, which can be found in the
chapter Technical Description.

Write Mask: the function Write Mask (FC 22) employs a logic between the value already written

and the two words that are configured in this field using %QW(0) for the AND mask and %QW(2)

for the OR mask; allowing the user to handle the word. This field is limited by the size of output
variables addressable memory (%Q) of each CPU, which can be found in the chapter Technical

Description.

Default Value: the factory default value cannot be set for the Mapping Diagnostic Area, IEC
Reading Variable, IEC Writing Variable and Writing Mask fields, since the creation of a relation can

be performed at any time on application development. The MasterTool IEC XE software itself

allocate a value from the range of direct representation output variables (%Q), still unused. Factory
default cannot be set to the Reading/Writing Data Size fields, as they will vary according to the

MODBUS data type selected.

ATTENTION:

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the MODBUS
RTU Master instance task or any other MODBUS task will stop being executed at the moment it

tries to write in the memory area. This occurs in order to maintain data consistency of memory areas

while MainTask is not running.

MODBUS RTU SLAVE

This protocol is available for the Nexto Series on its serial channels. At selecting this option in

MasterTool IEC XE, the CPU becomes a MODBUS communication slave, allowing the connection

with MODBUS RTU master devices. This protocol is available only in execution mode (Run Mode).

There are two ways to configure this protocol. The first one makes use of direct representation (%Q),

in which the variables are defined by your address. The second one, through symbolic mapping,

where the variables are defined by your name.

4. Configuration

 74

Independent of the configuration mode, the steps to insert an instance of the protocol and configure

the serial interface are equal. The procedure to insert an instance of the protocol is found in detail in

the MasterTool IEC XE User Manual -MU299605. The remaining configuration steps are described
below for each mode:

 Add the MODBUS RTU slave Protocol instance to the serial channel COM 1 or COM 2 (or both,

in cases of two communication networks). To execute this procedure see Initial Programming

chapter.

 Configure the serial interface, choosing the communication speed, the RTS/CTS signals

behavior, the parity, the stop bits channel, among others.

 See Serial Interfaces Configuration section.

MODBUS Slave Protocol Configuration via Symbolic Mapping

To configure this protocol using symbolic mapping, you must perform the following steps:

 Configure the MODBUS slave protocol general parameters, as: slave address and communication

times (available at the Slave advanced configurations button).

 Add and configure MODBUS relations, specifying the variable name, MODBUS data type, and

data initial address. Automatically, the data size and range will be filled, in accordance to the

variable type declared.

MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol initial screen (Figure 4-19), are defined as:

Figure 4-19. MODBUS RTU Slave Configuration Screen

Configuration Description Default Options

Slave Address MODBUS slave address 1 1 to 255

Table 4-33. Slave Configurations

The MODBUS slave protocol communication times, found in the “Advanced…” button on the

configuration screen, are divided in: Task Cycle, Send Delay and Minimum Interframe, as shown in
Figure 4-20 and in Table 4-34.

Figure 4-20. Modbus Slave Advanced Configurations

4. Configuration

 75

Configuration Description Default Possibilities

Task Cycle (ms)

Time for the instance

execution within the
cycle, without

considering its own
execution time

50 20 to 100

Send Delay (ms)
Delay for the
transmission response

0 0 to 65535

Minimum

Interframe (chars)

Minimum silence time

between different
frames

3.5 3.5 to 100.0

Table 4-34. Modbus Slave Advanced Configurations

Notes:

Task Cycle: the user will have to be careful when changing this parameter as it interferes directly in

the answer time, data volume for scan and mainly in the CPU resources balance between
communications and other tasks.

Send Delay: the answer to a MODBUS protocol may cause problems in certain moments, as in the

RS-485 interface or other half-duplex. Sometimes there’s a delay between the slave answer time and
the physical line silence (slave delay to put RTS in zero and put the RS-485 in high impedance state).

To solve this problem, the master can wait the determined time in this field before sending the new

request. On the opposite case, the first bytes transmitted by the master could be lost.

Minimum Interframe: the MODBUS standard defines this time as 3.5 characters, but this parameter

is configurable in order to attend the devices which don’t follow the standard.

The MODBUS Slave protocol diagnostics and commands configured, either by symbolic mapping or

direct representation, are stored in T_DIAG_MODBUS_RTU_SLAVE_1 variables. For the direct
representation mapping, they are also in 4 bytes and 8 words which are described in Table 4-35

(where “n” is the configured value in the %Q Initial Address of Diagnostic Area field).

Direct

Representation
Variable

Diagnostic Variable

T_DIAG_MODBUS_RTU_SLAVE_1 *.
Size Description

Diagnostic Bits:

%QX(n).0

tDiag.*

bRunning BIT The slave is in execution mode

%QX(n).1 bNotRunning BIT
The slave is not in execution (see bit:

bInterruptedByCommand)

%QX(n).2 bInterruptedByCommand BIT
The bit bNotRunning was enabled as
the slave was interrupted by the user

through command bits

%QX(n).3 bConfigFailure BIT Discontinued diagnosis

%QX(n).4 bRXFailure BIT Discontinued diagnosis

%QX(n).5 bTXFailure BIT Discontinued diagnosis

%QX(n).6 bModuleFailure BIT Discontinued diagnosis

%QX(n).7 bDiag_7_reserved BIT Reserved

Error codes:

%QB(n+1)

eErrorCode
SERIAL_STATUS

(BYTE)

0: there is no error

1: invalid serial port

2: invalid serial port mode

3: invalid baud rate

4: invalid data bits

5: invalid parity

6: invalid stop bits

7: invalid modem signal parameter

8: invalid UART RX Threshold

4. Configuration

 76

Direct

Representation
Variable

Diagnostic Variable
T_DIAG_MODBUS_RTU_SLAVE_1 *.

Size Description

parameter

9: invalid time-out parameter

10: serial port busy

11: UART hardware error

12: remote hardware error

20: invalid transmission buffer size

21: invalid modem signal method

22: time-out of CTS = true

23: time-out of CTS = false

24: transmission time-out error

30: invalid reception buffer size

31: reception time-out error

32: flow control configured differently
from the manual

33: invalid flow control for the
configured serial port

34: data reception not allowed in the
normal mode

35: data reception not allowed in the
extended mode

36: DCD interruption not allowed

37: CTS interruption not allowed

38: DSR interruption not allowed

39: serial port not configured

50: internal error in the serial port

Command bits, automatically initialized:

%QX(n+2).0

tCommand.*

bStop BIT Stop slave

%QX(n+2).1 bRestart BIT Restart slave

%QX(n+2).2 bResetCounter BIT Restart diagnostics statistics (counters)

%QX(n+2).3 bDiag_19_reserved BIT Reserved

%QX(n+2).4 bDiag_20_reserved BIT Reserved

%QX(n+2).5 bDiag_21_reserved BIT Reserved

%QX(n+2).6 bDiag_22_reserved BIT Reserved

%QX(n+2).7 bDiag_23_reserved BIT Reserved

%QB(n+3) byDiag_03_reserved BYTE Reserved

Communication Statistics:

%QW(n+4)

tStat.*

wRXRequests WORD

Counter of normal requests received
by the slave and answered normally. In

case of a broadcast command, this
counter is incremented, but it is not
transmitted (0 to 65535)

%QW(n+6) wTXExceptionResponses WORD

Counter of normal requests received

by the slave and answered with
exception code. In case of a broadcast
command, this counter is incremented,

but it isn’t transmitted (0 to 65535).
Exception codes:

1: the function code (FC) is legal, but
not supported

2: relation not found in these MODBUS
data

3: illegal value for this field

128: the master/client hasn’t right for

writing or reading

129: the MODBUS relation is disabled

%QW(n+8) wRXFrames WORD

Counter of frames received by the

slave. It’s considered a frame
something which is processed and it is
followed by a Minimum Interframe

Silence, in other words, an illegal
message is also computed (0 to
65535)

4. Configuration

 77

Direct

Representation
Variable

Diagnostic Variable
T_DIAG_MODBUS_RTU_SLAVE_1 *.

Size Description

%QW(n+10) wRXIllegalRequests WORD

Illegal request counter. These are

frames which start with address 0
(broadcast) or with the MODBUS slave
address, but aren’t legal requests –

invalid syntax, smaller frames, invalid
CRC – (0 to 65535)

%QW(n+12) wRXOverrunErrors WORD
Counter of frames with overrun errors
during reception – UART FIFO or RX

line – (0 to 65535).

%QW(n+14) wRXIncompleteFrames WORD

Counter of frames with construction

errors, parity or failure during reception
(0 to 65535).

%QW(n+16) wCTSTimeOutErrors WORD
Counter of CTS time-out error, using

the RTS/CTS handshake, during the
transmission (0 to 65535).

%QW(n+18) wDiag_18_reserved WORD Reserved

Table 4-35. MODBUS RTU Slave Diagnostic

Note:

Counters: all MODBUS RTU Slave diagnostics counters return to zero when the limit value 65535
is exceeded.

Configuration of the Relations – Symbolic Mapping Setting

The MODBUS mapping configuration, depicted on Figure 4-21 follow the parameters described on

Table 4-36.

Figure 4-21. MODBUS Data Mappings Screen

Configuration Description Default Options

Value Variable Symbolic variable name -
Name of a variable declared in a program or

GVL

Data Type MODBUS data type -

Coil (1-bit)

Input Status (1-bit)

Holding Register (16-bit)

Input Register (16-bit)

Data Start

Address
MODBUS data initial address - 1 to 65536

Data Size MODBUS data size - 1 to 65536

Data Range
The data address range
configured

- -

Table 4-36. MODBUS Mappings Configurations

Notes:

Variable Value: this field is used to specify a symbolic variable in MODBUS relation.

Data Type: this field is used to specify the data type used in the MODBUS relation.

4. Configuration

 78

Data Type Size [bits] Description

Coil 1 Digital output that can be read or written.

Input Status 1 Digital input (read only).

Holding Register 16 Analog output that can be read or written.

Input Register 16 Analog input (read only).

Table 4-37. Data types supported in MODBUS RTU Slave

Data Start Address: data initial address of the MODBUS relation.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can
access from the initial address. Thus, in order to read a continuous range of addresses, it is necessary

that all addresses are declared in a single relation. This field varies according to the configured type

of MODBUS data.

Data Range: this field shows the user the memory address range used by the MODBUS relation.

ATTENTION:

Differently from other application tasks, when a depuration mark in the MainTask is reached, the

task of a Slave MODBUS RTU instance and any other MODBUS task will stop running at the
moment that it tries to perform a writing in a memory area. It occurs in order to keep the consistency

of the memory areas data while a MainTask is not running.

MODBUS Slave Protocol Configuration via Direct Representation (%Q)

To configure this protocol using Direct Representation (%Q), you must perform the following steps:

 Configure the general parameters of MODBUS slave protocol, such as: communication times,

address and direct representation variables (%Q) to receive diagnostics and control relations.

 Add and configure MODBUS relations, specifying the MODBUS data type, direct representation

variables (%Q) to receive/write the data and amount of data to communicate.

The descriptions of each setting are listed below, in this chapter.

General Parameters of MODBUS Slave Protocol – Configuration via Direct Representation (%Q)

The general parameters, found on the home screen of MODBUS protocol configuration (Figure

4-22), are defined as:

4. Configuration

 79

Figure 4-22. MODBUS RTU Slave Configuration Screen

Address and direct representation variables (%Q) to control relations and diagnostics:

Configuration Description Default Value Options

%Q Start Address
of

DiagnosticsArea

Initial address of the diagnostic
variables

- 0 to 2147483628

Size Size of diagnostics area -
Disabled for

editing

Slave Address MODBUS slave address 1 1 to 255

Mapping

Disabling

Initial address used to disable

MODBUS relations
- 0 to 2147483644

Table 4-38. Address and Direct Representation Variables Settings

Notes:

%Q Start Address of DiagnosticsArea: this field is limited by the size of output variables

addressable memory (%Q) of each CPU, which can be found in chapter Technical Description.

Slave Address: it is important to note that the Slave accepts requests broadcast, when the master

sends a command with the address set to zero. Moreover, in accordance with standard MODBUS, the

valid address range for slaves is 1 to 247. The addresses 248 to 255 are reserved.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations

configured in Slave mappings space. The relation is disabled when the corresponding bit is equal to

1, otherwise, the mapping is enabled. This field is limited by the size of output variables addressable

memory (%Q) of each CPU, which can be found on Technical Description chapter.

Default Value: the factory default value cannot be set for the Initial Address of Diagnostics in %Q

and Disabling of Mappings fields, since the creation of a relation can be performed at any time on

application development. The MasterTool IEC XE software itself allocate a value from the range of
direct representation output variables (%Q), still unused.

The MODBUS protocol diagnostics and commands are described in the Table 4-35.

The communication times of the MODBUS Slave protocol, found on the button "Advanced ..." of the
configuration screen, are described in Table 4-34.

4. Configuration

 80

Mappings Configuration – Configuration via Direct Representation (%Q)

The settings of the MODBUS relations, viewed in Figure 4-23 and Figure 4-24, follow the

parameters described in Table 4-39:

Figure 4-23. Adding MODBUS Relations

Figure 4-24. Configuring the MODBUS Relation

Configuration Description Default Value Options

Data Type MODBUS data type Coil

Coil (1-bit)

Holding Register (16-bit)

Input Status (1-bit)

Input Register (16-bit)

Data Start

Address

Initial address of the

MODBUS data
1 1 to 65536

Data Size Number of MODBUS data - 1 to 65536

IEC Variable
Initial address of variables

(%Q)
- 0 to 2147483647

Read Only Only allows reading Disabled Enabled or disabled

Table 4-39. Slave Mappings

Notes:

Options: the values written in the column Options may vary according with the configured
MODBUS data.

4. Configuration

 81

Data Size: the value of data size defines the maximum amount of data that a MODBUS relation can

access, from the initial address. Thus, to read a continuous address range, it is necessary that all

addresses are declared in a single interface. This field varies with the MODBUS data type
configured, i.e. when selected Coil or Input Status type, the data field size must be a multiple of

eight. Also, the maximum amount must not exceed the size of output addressable memory and not

assign the same values used in the application.

IEC Variable: in case the MODBUS data type is Coil or Input Status (1-bit), the IEC variables

initial address will be in the format %QX10.1. However, if the MODBUS data type is Holding

Register or Input Register (16-bit), the IEC variables initial address will be in the format %QW. This

field is limited by the memory size of the addressable output variables (%Q) from each CPU, which
can be seen on Technical Description chapter.

Read-only: when enabled, it only allows the communication master to read the variable data. It does

not allow the writing. This option is valid for the writing functions only.

Default Value: the default value cannot be defined for the IEC Variable field since the creation of a

relation can be performed at any time on application development. The MasterTool IEC XE software

itself allocate a value from the range of direct representation output variables (%Q), still unused. The

default cannot be defined for the Data Size field as it will vary according to selected MODBUS data
type.

In the previously defined relations, the maximum MODBUS data size can be 65535 (maximum value

configured in the Data Size field). However, the request which arrives in the MODBUS RTU Slave
must address a subgroup of this mapping and this group must have, at most, the data size depending

on the function code which is defined below:

 Read coils (FC 1): 2000

 Read input status (FC 2): 2000

 Read holding registers (FC 3): 125

 Read input registers (FC 4): 125

 Write single coil (FC 5): 1

 Write single holding register (FC 6): 1

 Force multiple coils (FC 15): 1968

 Write holding registers (FC 16): 123

 Write register mask (FC 22): 1

 Read/ Write holding registers (FC 23):

o Read: 121
o Write: 121

ATTENTION:

Differently from other application tasks, when a depuration mark in the MainTask is reached, the

task of a Slave MODBUS RTU instance and any other MODBUS task will stop running at the
moment that it tries to perform a writing in a memory area. It occurs in order to keep the consistency

of the memory areas data while a MainTask is not running.

MODBUS Ethernet

The multi-master communication allows the Nexto CPUs to read or write MODBUS variables in
other controllers or HMIs compatible with the MODBUS TCP protocol or MODBUS RTU via TCP.

The Nexto CPU can, at the same time, be client and server in the same communication network, or

even have more instances associated to the Ethernet interface. It does not matter if they are
MODBUS TCP or MODBUS RTU via TCP, as described on Table 4-17.

Figure 4-25 represents some of the communication possibilities using the MODBUS TCP protocol

simultaneously with the MODBUS RTU via TCP protocol.

4. Configuration

 82

Figure 4-25. MODBUS TCP Communication Network

The association of MODBUS variables with CPU symbolic variables is made by the user through

relations definition via MasterTool IEC XE configuration tool. It’s possible to configure up to 32

relations for the server mode and up to 128 relations for the client mode. The relations in client mode,
on the other hand, must respect the data maximum size of a MODBUS function: 125 registers (input

registers or holding registers) or 2000 bits (coils or input status). This information is detailed in the

description of each protocol.

All relations, in client mode or server mode, can be disabled through direct representation variables

(%Q) identified as Mapping Disabling by MasterTool IEC XE. The disabling may occur through

general bits which affect all relations of an operation mode, or through specific bits, affecting
specific relations.

For the server mode relations, IP addresses clusters can be defined with writing and reading

allowance, called filters. This is made through the definition of an IP network address and of a subnet

mask, resulting in a group of client IPs which can read and write in the relation variables.
Reading/writing functions are filtered, in other words, they cannot be requested by any client,

independent from the IP address. This information is detailed in the MODBUS Ethernet Server

protocol.

When the MODBUS TCP protocol is used in the client mode, it’s possible to use the multiple

requests feature, with the same TCP connection to accelerate the communication with the servers.

When this feature isn’t desired or isn’t supported by the server, it can be disabled (relation level
action). It is important to emphasize that the maximum number of TCP connections between the

client and server is 63. If some parameters are changed, inactive communications can be closed,

which allows the opening of new connections.

4. Configuration

 83

Table 4-40 and Table 4-41 bring, respectively, the complete list of data and MODBUS functions

supported by the Nexto CPUs.

Data type Size [bits] Description

Coil 1 Digital output which can be read or written

Input Status 1 Digital input which can be only read

Holding Register 16 Analog output which can be read or written

Input Register 16 Analog input which can be only read

Table 4-40. MODBUS Data Types Supported by Nexto CPUs

Function Type
Code

Description
DEC HEX

Variables Access

1 0x01 Coils reading (FC 1)

2 0x02 Input status reading (FC 2)

3 0x03 Holding registers reading (FC 3)

4 0x04 Input registers reading (FC 4)

5 0x05 Coil writing (FC 5)

6 0x06 Holding register writing (FC 6)

15 0x0F Multiple coils writing (FC 15)

16 0x10 Multiples holding registers writing (FC 16)

22 0x16 Writing mask of a holding register (FC 22)

23 0x17
Multiples holding registers reading/writing (FC

23)

Table 4-41. MODBUS Functions Supported by Nexto CPUs

Independent of the configuration mode, the steps to insert an instance of the protocol and configure
the Ethernet interface are equal. The remaining configuration steps are described below for each

modality.

 Add one or more instances of the MODBUS Ethernet client or server protocol to Ethernet

channel NET 1 or NET 2 (or both, in the case of more than one communication network). To

perform this procedure, refer to the section Initial Programming - Inserting a Protocol Instance.

 Configure the Ethernet interface. To perform this procedure, see section Ethernet Interfaces

Configuration.

MODBUS Ethernet CLIENT

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this
option at MasterTool IEC XE, the CPU becomes a MODBUS communication client, allowing the

access to other devices with the same protocol, when it’s in execution mode (Run Mode).

There are two ways to configure this protocol. The first one makes use of direct representation (%Q),

in which the variables are defined by your address. The second one, through symbolic mapping,
where the variables are defined by your name.

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User

Manual – MU299605 or on Initial Programming - Inserting a Protocol Instance section.

MODBUS Ethernet Client Configuration via Symbolic Mapping

To configure this protocol using Symbolic Mapping, it’s necessary to execute the following steps:

 Configure the general parameters of MODBUS protocol client, with the Transmission Control

Protocol (TCP) or RTU via TCP.

 Add and configure devices by setting IP address, port, and address of the slave and time-out of

communication (available on the Advanced Settings button of the device).

4. Configuration

 84

 Add and configure the MODBUS mappings, specifying the variable name, data type, data initial

address, data size and variable that will receive the quality data.

 Add and configure the MODBUS request, specifying the desired function, the scan time of the

request, the initial address (read/write), the size of the data (read/write), the variable that will

receive the data quality, and the variable responsible for disabling the request.

MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol configuration initial screen (Figure 4-26),

are defined as:

Figure 4-26. MODBUS Client General Parameters Configuration Screen

Configuration Description Default Options

Connection Mode Protocol selection TCP
RTU via TCP

TCP

Table 4-42. MODBUS Client General Configurations

The MODBUS Client protocol diagnostics and commands configured, either by symbolic mapping

or direct representation, are stored in T_DIAG_MODBUS_ETH_CLIENT_1 variables. For the direct

representation mapping, they are also in 4 bytes and 8 words which are described in Table 4-43
(where “n” is the configured value in the %Q Initial Address of Diagnostic Area field).

Direct

Representation
Variable

Diagnostic Variable

T_DIAG_MODBUS_ETH_CLIENT_1.*
Size Description

Diagnostic Bits:

%QX(n).0

tDiag.*

bRunning BIT The client is in execution mode

%QX(n).1
bNotRunning BIT

The client is not in execution

mode (see bit
bInterruptedByCommand)

%QX(n).2

bInterruptedByCommand BIT

The bit bNotRunning was

enabled, as the client was
interrupted by the user through

command bits

%QX(n).3 bConfigFailure BIT Discontinued diagnostics

%QX(n).4
bRXFailure BIT Discontinued diagnostics

%QX(n).5
bTXFailure BIT Discontinued diagnostics

%QX(n).6

bModuleFailure BIT

Indicates if there is failure in the

module or the module is not
present

%QX(n).7
bAllDevicesCommFailure BIT

Indicates that all devices

configured in the Client are in fail

%QB(n+1) byDiag_1_reserved BYTE Reserved

Command bits, automatically initialized:

%QX(n+2).0

tCommand.*

bStop BIT Stop client

%QX(n+2).1 bRestart BIT Restart client

%QX(n+2).2 bResetCounter BIT Restart the diagnostic statistics

4. Configuration

 85

(counters)

%QX(n+2).3 bDiag_19_reserved BIT Reserved

%QX(n+2).4 bDiag_20_reserved BIT Reserved

%QX(n+2).5 bDiag_21_reserved BIT Reserved

%QX(n+2).6 bDiag_22_reserved BIT Reserved

%QX(n+2).7 bDiag_23_reserved BIT Reserved

%QB(n+3) byDiag_03_reserved BYTE Reserved

Communication Statistics:

%QW(n+4)

tStat.*

wTXRequests WORD
Counter of number of requests
transmitted by the client (0 to

65535)

%QW(n+6) wRXNormalResponses WORD

Counter of normal answers

received by the client (0 to
65535)

%QW(n+8) wRXExceptionResponses WORD
Counter of answers with

exception code (0 to 65535)

%QW(n+10) wRXIllegalResponses WORD

Counter of illegal answers

received by the client – invalid
syntax, invalid CRC or not

enough bytes received (0 to
65535)

%QW(n+12) wDiag_12_reserved WORD Reserved

%QW(n+14) wDiag_14_reserved WORD Reserved

%QW(n+16) wDiag_16_reserved WORD Reserved

%QW(n+18) wDiag_18_reserved WORD Reserved

Table 4-43. MODBUS Client Protocol Diagnostics

Note:

Counters: all MODBUS TCP Client diagnostics counters return to zero when the limit value 65535
is exceeded.

Device Configuration – Configuration via Symbolic Mapping

The client devices configuration, depicted on Table 4-44, follow the parameters:

Figure 4-27. Device General Parameters Settings

Configuration Description Default Options

IP Address Server IP address 0. 0. 0. 0 1.0.0.1 to 223.255.255.255

TCP Port TCP port 502 2 to 65534

Slave Address MODBUS Slave address - 0 to 255

Table 4-44. MODBUS Client General Configurations

4. Configuration

 86

Notes:

IP Address: IP address of Modbus Server Device.

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface,
different TCP ports must be selected for each instance. Some TCP ports, among the possibilities

mentioned above, are reserved and therefore cannot be used. They are: 80, 8080, 1217, 1740, 1741,

1742,1743 and 11740.

Slave address: according to the MODBUS standard, the valid address range for slaves is 0 to 247,

where addresses 248 to 255 are reserved. When the master sends a command of writing with the

address set to zero, it is performing broadcast requests on the network.

The parameters in the advanced settings of the MODBUS Client device, found on the button
"Advanced ..." in the General Parameters tab are divided into: maximum number of simultaneous

requests, Time out, Time-out Mode of Connection and Inactive Time.

Configuration Description Default Options

Maximum Simultaneous

Request

Number of simultaneous

request the client can ask from
the server

1 1 to 8

Communication Time-out
(ms)

Application level time-out in ms 3000 10 to 65535

Mode
Defines when the connection
with the server finished by the

client

Connection is
closed after an

inactive time of
(s):(10 to 3600)

Connection is closed after a
timeout.

Connection is closed at the
end of each communication.

Connection is closed after an
inactive time of (s):(10 to

3600)

Inactive Time (s) Inactivity time 10 3600

Table 4-45. MODBUS Client Advanced Configurations

Notes:

Maximum Simultaneous Requests: it is used with a high scan cycle. This parameter is fixed in 1
(not editable) when the configured protocol is MODBUS RTU via TCP.

Communication Time-out: the Communication time-out is the time that the client will wait for a

server response to the request. For a MODBUS Client device, two variables of the system must be
considered: the time the server takes to process a request and the response sending delay in case it is

set in the server. It is recommended that the time-out is equal or higher than twice the sum of these

parameters. For further information, check Protocols Configuration-Communication Performance

chapter.

Mode: defines when the connection with the server is finished by the client. Below follows the

available options:

 Connection is closed after an time-out or Connection is never closed in normal situations: Those

options presents the same behavior of Client, close the connection due non response of the a
request by the Server before reaching the Communication Time-out.

 Connection is closed at the end of each communication: The connection is closed by the Client

after finish each request.

 Connection is closed after Inactive Time: The connection will be closed by the Client if it reach

the Inactive Time without performing a request to the Server.

Inactive Time: inactivity connection time.

Mappings Configuration – Configuration via Symbolic Mapping

The MODBUS Client mappings configuration, showed on Figure 4-28, follow the parameters

described on Table 4-46:

4. Configuration

 87

Figure 4-28. MODBUS Data Type

Configuration Description
Default

Value
Options

Value Variable Symbolic variable name -
Name of a variable declared in a program or

GVL

Data Type MODBUS data type -

Coil Write (1-bit)

Coil Read (1-bit)

Holding Register Write (16-bit)

Holding Register Read (16 bit)

Holding Register – AND Mask (16-bit)

Holding Register – OR Mask (16-bit)

Input Register (16-bit)

Input Status (1-bit)

Data Start

Address

Initial address of the MODBUS

data
- 1 to 65536

Data Size Size of the MODBUS data - 1 to 65536

Data Range
The data range address
configured

- -

Table 4-46. MODBUS Client Mappings Configuration

Notes:

Value Variable: this field is used to specify a symbolic variable in MODBUS relation.

Data Type: this field is used to specify the data type used in the MODBUS relation.

Data type Size [bits] Description

Coil Write 1 Write digital output

Coil Read 1 Read digital output

Holding Register Write 16 Write analog output

Holding Register Read 16 Read analog output

Holding Register- AND
Mask

16 AND mask used in “write analog output”

Holding Register- OR Mask 16 OR mask used in “write analog output”

Input Register 16 Analog input that can only be read

Input Status 1 Digital input which can only be read

Table 4-47. Data types supported in MODBUS Client

4. Configuration

 88

Data Start Address: initial address of the MODBUS mapping data.

Data Size: the size value specifies the maximum amount of data that a MODBUS relation can

access, from the initial address. Thus, to read a continuous address range, it is necessary that all
addresses are declared in a single interface. This field varies with the MODBUS data type

configured.

Data Range: this field shows to the user the memory address range used by the MODBUS relation.

Requests Configuration – Configuration via Symbolic Mapping

The setting of the MODBUS requests, displayed in Figure 4-29, follows the parameters described in

Table 4-48:

Figure 4-29. MODBUS Data Request Screen

Configuration Description
Default

Value
Options

Function Code MODBUS function type -

01– Read Coils

02– Read Input Status

03– Read Holding Registers

04– Read Input Registers

05– Write Coil

06– Write Register

15– Write multiple Coils

16 – Write Multiple Registers

22– Masked Writing of Register

23 –Read/Write Multiple Register

Polling (ms) Period of communication (ms) 100 0 to 3600000

Read Data Start
Address

Initial address of the
MODBUS read data

- 1 to 65536

Read Data Size MODBUS read data size - Depends on the function used

Read Data Range
MODBUS read data address

range
- 0 to 2147483646

Write Data Start

Address

Initial address of the

MODBUS write data
- 1 to 65536

Write Data Size MODBUS write data size - Depends on the function used

Write Data Range
MODBUS write data address

range
- 0 to 2147483647

Diagnostic Diagnostic variable name - Name of a variable declared in a program

4. Configuration

 89

Variable or GVL

Disabling Variable
Variable used to disable
MODBUS

-

Field for symbolic variable used to disable

MODBUS requests individually configured.
This variable must be of BOOL type. The
variable can be simple or array element

and can be in structures.

Table 4-48. MODBUS Client Relations Configuration

Notes:

MODBUS Relation Settings: the number of factory default settings, and the values for the column
Options, may vary according to the data type and MODBUS function (FC).

Function Code: MODBUS functions (FC) available are as follows:

Function Type
Code

Description
DEC HEX

Access to Variables

1 0x01 Read coils (FC 01)

2 0x02 Read input status (FC 02)

3 0x03 Read holding registers (FC 03)

4 0x04 Read input registers (FC 04)

5 0x05 Write a coil (05 FC)

6 0x06 Write a holding register (FC 06)

15 0x0F Write multiple coils (FC 15)

16 0x10 Write holding registers (FC 16)

22 0x16 Register write mask (FC 22)

23 0x17 Read/Write holding registers (FC 23)

Table 4-49. MODBUS Client Functions

Polling: this parameter indicates how often the communication set for this request must be

performed. By the end of a communication will be awaited a time equal to the value configured in
the field scan and after that, a new communication will be executed.

Read Data Start Address: field for the initial address of the MODBUS read data.

Read Data Size: the minimum value for the read data size is 1 and the maximum value depends on

the MODBUS function (FC) used, as below:

 Read Coils (HR 1): 2000

 Read Input Status (FC 2): 2000

 Read Holding Registers (HR 3): 125

 Read Input Registers (HR 4): 125

 Read/Write Holding Registers (FC 23): 121

Read Data Range: this field shows the MODBUS read data range configured for each request. The

initial address plus the read data size will result in the range of read data for each request.

Write Data Start Address: field for the initial address of MODBUS write data.

Write Data Size: the minimum value for the size of the write data is 1 and the maximum value

depends on the MODBUS function (FC) used, as below:

 Write Coil (HR 5): 1

 Write Holding Registers (FC 6): 1

 Write Multiple Coils (FC 15): 1968

 Write Holding Registers (FC 16): 123

 Register write mask (FC 22):

 Read/Write Holding Registers (FC 23): 121

4. Configuration

 90

Write Data Range: this field shows the MODBUS write data range configured for each request. The

initial address of writing plus the size of the write data will result in the range of write data for each

request.

Diagnostic Variable: the configured MODBUS request diagnostics, either by symbolic mapping or

by direct representation, are stored in variables of type T_DIAG_MODBUS_ETH_CLIENT_1 and

the mapping by direct representation are in 4-byte and 2-word, which is described in Table 4-50 (n is
the value configured in the field Diagnostics Initial Address in %Q).

Direct

Representation
Variable

Diagnostics of

T_DIAG_MODBUS_ETH_MAPPING_1.*
Type Variable

Size Description

Communication Status Bits:

%QX(n).0

byStatus.*

bCommIdle BIT
Communication idle (waiting to

be executed)

%QX(n).1 bCommExecuting BIT Active communication

%QX(n).2 bCommPostponed BIT

Communication deferred,

because the maximum number
of concurrent requests was

reached. Deferred
communications will be carried
out in the same sequence in

which they were ordered to
avoid indeterminacy. The time
spent in this State is not counted

for the purposes of time-out. The
bCommIdle and
bCommExecuting bits are false

when the bCommPostponed bit
is true.

%QX(n).3 bCommDisabled BIT

Communication disabled. The

bCommIdle bit is restarted in this
condition.

%QX(n).4 bCommOk BIT
Communication terminated

previously was held
successfully.

%QX(n).5 bCommError BIT
Communication terminated
previously had an error. Check

error code.

%QX(n).6 bCommAborted BIT

Previously terminated

communication was interrupted
due to connection failure.

%QX(n).7 bDiag_7_reserved BIT Reserved

Last error code (enabled when bCommError = true):

%QB(n+1) eLastErrorCode
MASTER_ERROR_CODE
(BYTE)

Informs the possible cause of

the last error in the MODBUS
mapping. Consult Table 4-51 for

further details.

Last exception code received by master:

%QB(n+2) eLastExceptionCode
MODBUS_EXCEPTION

(BYTE)

NO_EXCEPTION (0)

FUNCTION_NOT_SUPPORTED

(1)

MAPPING_NOT_FOUND (2)

ILLEGAL_VALUE (3)

ACCESS_DENIED (128) *

MAPPING_DISABLED (129) *

IGNORE_FRAME (255) *

Communication statistics:

%QB(n+3) byDiag_3_reserved BYTE Reserved.

%QW(n+4) wCommCounter WORD

Communications counter

terminated, with or without
errors. The user can test when

communication has finished
testing the variation of this
counter. When the value 65535

4. Configuration

 91

is reached, the counter returns

to zero.

%QW(n+6) wCommErrorCounter WORD

Communications counter

terminated with errors. When the
value 65535 is reached, the

counter returns to zero.

Table 4-50. MODBUS Client Relations Diagnostics

Exception Codes: the exception codes show in this filed is the server returned values. The

definitions of the exception codes 128, 129 and 255 are valid only with Altus slaves. For slaves from
other manufacturers these exception codes can have different meanings.

Disabling Variable: field for the variable used to disable MODBUS requests individually configured

within requests. The request is disabled when the variable, corresponding to the request, is equal to 1,
otherwise the request is enabled.

Last Error Code: The codes for the possible situations that cause an error in the MODBUS

communication can be consulted below:

Code Enumerable Description

1 ERR_EXCEPTION
Reply is in an exception code (see eLastExceptionCode =
Exception Code).

2 ERR_CRC Reply with invalid CRC.

3 ERR_ADDRESS
MODBUS address not found. The address that replied the

request was different than expected.

4 ERR_FUNCTION
Invalid function code. The reply’s function code was different

than expected.

5 ERR_FRAME_DATA_COUNT The amount of data in the reply was different than expected.

6 ERR_INVALID_PROTOCOL_ID
Unidentified protocol. The reply’s protocol is different than
expected.

7 ERR_NOT_ECHO The reply is not an echo of the request (FC 5 and 6).

8 ERR_REFERENCE_NUMBER Invalid reference number (FC 15 and 16).

9 ERR_INVALID_FRAME_SIZE Reply shorter than expected.

20 ERR_CONNECTION Error while establishing connection.

21 ERR_SEND Error during transmission stage.

22 ERR_RECEIVE Error during reception stage.

40 ERR_CONNECTION_TIMEOUT Application level time-out during connection..

41 ERR_SEND_TIMEOUT Application level time-out while establishing transmission.

42 ERR_RECEIVE_TIMEOUT Application level time-out while waiting for reply.

128 NO_ERROR No error since startup.

Table 4-51. MODBUS Client error codes

ATTENTION:

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the MODBUS
Ethernet Client instance task or any other MODBUS task will stop being executed at the moment it

tries to write in the memory area. This occurs in order to maintain data consistency of memory areas

while MainTask is not running.

MODBUS Ethernet Client configuration via Direct Representation (%Q)

To configure this protocol using direct representation (%Q), the user must perform the following

steps:

 Configure the general parameters of MODBUS protocol client, such as: protocol and direct

representation variables (%Q) to receive diagnostics.

 The descriptions of each configuration are listed below in this chapter.

4. Configuration

 92

 Add and configure devices by setting address, direct representation variables (%Q) to disable the

relations and communication port.

 Add and configure MODBUS relations, specifying the data type and MODBUS function, time-

outs, direct representation variables (%Q) to receive diagnoses of the relation and other to

receive/write the data, amount of data to be reported and polling of the relation.

The descriptions of each configuration are listed below in this chapter.

General parameters of MODBUS Protocol Client-configuration for Direct Representation (% Q)

The General parameters, found on the home screen of MODBUS protocol configuration (Figure
4-30), are defined below.

Figure 4-30. MODBUS Client Setup Screen

Protocol selection and direct representation variables (%Q) for diagnostics:

Setting Description Default Value Options

%Q Start Address of

Diagnostics Area

Initial address of the

diagnostic variables
- 0 to 2147483628

Size Size of diagnostics 20 Disabled for editing

Protocol Protocol selection TCP
RTU via TCP

TCP

Table 4-52. Protocol selection and direct representation variables for diagnostics

Notes:

%Q Start Address of Diagnostics Area: this field is limited by the size of output variables
addressable memory (%Q) at CPU, which can be found in chapter Technical Description.

Default Value: the default value cannot be defined for the Initial Address of Diagnostics in %Q field

since the creation of a protocol instance can be made at any moment within the application
development. The MasterTool IEC XE software itself allocate a value from the range of direct

representation output variables (%Q), still unused.

The diagnostics and MODBUS commands are described in Table 4-43.

4. Configuration

 93

Device Configuration – Configuration via Direct Representation (%Q)

The configuration of client devices, displayed in Figure 4-31, includes the following parameters:

Figure 4-31. Configuring MODBUS Client

Configuration Description Factory default Options

Name Name of the instance MODBUS_Device
Identifier, according to

IEC 61131-3

Destination IP IP address of the server 0.0.0.1
1.0.0.1 to

223.255.255.255

TCP Port TCP Port 502 2 to 65534

Mapping
Disabling

Initial address used to disable
MODBUS relations

-
Any address of the %Q

area, limited by the

CPU model.

Table 4-53. Configuration of Client Devices

Notes:

Name: this field is the identifier of the device, which is checked according to IEC 61131-3, i.e. it
does not allow spaces, special characters and starting with numeral character. It is limited to 24

characters.

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface,
different TCP ports must be selected for each instance. Some TCP ports, among the possibilities

mentioned above, are reserved and therefore cannot be used. They are: 80, 8080, 1217, 1740, 1741,

1742,1743 and 11740.

Mapping Disabling: composed of 32 bits, it is used to disable, individually, the 32 MODBUS

relations configured in device mappings space. The relation is disabled when the corresponding bit is

equal to 1, otherwise, the mapping is enabled. This field is limited by the size of output variables

addressable memory (% Q) at CPU, which can be found in chapter Technical Description - Specific
Features.

Default Value: factory default cannot be set for the Disabling of Mappings field, since the creation

of a protocol instance can be made at any moment within the application development. The
MasterTool IEC XE software itself allocate a value from the range of direct representation output

variables (%Q), still unused.

Communication Time-out: the settings present on the button "Advanced ..." on the TCP connection,
are described in the notes of the section Device Configuration – MODBUS Master Protocol

Configuration by Symbolic Mapping.

4. Configuration

 94

Mapping Configuration – Configuration via Direct Representation (%Q)

The setting of the MODBUS relations, displayed in Figure 4-32 and Figure 4-33, follows the

parameters described in Table 4-54.

Figure 4-32. MODBUS Data Type

Figure 4-33. MODBUS Function

Configuration Description Default Value Option

Function MODBUS function type Read

Read

Write

Read/Write

Write Mask

Slave Address The MODBUS slave address 1 0 to 255

Polling (ms) Period of communication (ms) 100 0 to 3600000

Mapping

Diagnostics
Area

Starting address of MODBUS
interface diagnostics

- 0 to 2147483640

Read
Starting address of the read

data MODBUS
1 1 to 65536

Read Data Size
Number of read data

MODBUS
-

Depends on the

function used

Read IEC
Variable

Starting address of the read
variables (%I)

- 0 to 2147483647

Write Data Start

Address

Starting address of MODBUS

writing data
1 1 to 65536

Write Data Size
Number of MODBUS writing

data
-

Depends on the

function used

Write IEC

Variable

Starting address of the write

variables (%Q)
- 0 to 2147483647

4. Configuration

 95

Write Mask of

IEC Variables

Starting address of variables

for write mask (%Q)
- 0 to 2147483644

Table 4-54. Device Mapping

Notes:

Device Mappings Table: the number of settings and values described in the column Options may

vary according to the data type and MODBUS function.

Slave Address: typically, the address 0 is used when the server is a MODBUS RTU or MODBUS

TCP Gateway via TCP, and the same broadcasts the request to all network devices. When the address

0 is used, the client waits for a response and its use serves only to written commands. Moreover, in

accordance with MODBUS standard, the valid address range for slaves is 0 to 247, and addresses 248
to 255 are reserved.

Polling: this parameter indicates how often the communication set for this relation must be executed.

At the end of communication will be awaited a time equal to the configured polling and after, will be
performed a new communication as soon as possible.

Mapping Diagnostic Area: this field is limited by the size of output variables addressable memory

(%Q) at CPU, which can be found in the chapter Technical Description - Specific Features. The
configured MODBUS relations diagnostics are described in Table 4-50.

Size of the Read and Write Data: details of the size of the data supported by each function are

described in the notes of Requests Configuration –Symbolic Mapping Settings section.

Read IEC Variable: in case the MODBUS data type is Coil or Input Status (1-bit), the IEC variables
initial address will be in the format %IX10.1. However, if the MODBUS data type is Holding

Register or Input Register (16-bit), the IEC variables initial address will be in the format %IW. This

field is limited by the memory size of the addressable input variables (%I) from each CPU, which can
be seen on Technical Description chapter.

Write IEC Variable: in case the MODBUS data type is Coil or Input Status (1-bit), the IEC

variables initial address will be in the format %QX10.1. However, if the MODBUS data type is

Holding Register or Input Register (16-bit), the IEC variables initial address will be in the format
%QW. This field is limited by the memory size of the addressable output variables (%Q) from each

CPU, which can be seen on Technical Description - Specific Features chapter.

Write Mask of IEC Variables: the Register Write Mask function (FC 22) employs a logic between
the value already written and the two words that are configured in this field using %QW(0) for the

AND mask and %QW(2) for the OR mask; allowing the user to handle the word. This field is limited

by the size of output variables addressable memory (%Q) of each CPU, which can be found in the
chapter Technical Description - Specific Features.

Default Value: the factory default value cannot be set for the Mapping Diagnostic Area, IEC Read

Variable, IEC Write Variable and Write Mask of IEC Variables fields, since the creation of a relation

can be performed at any time on application development. The MasterTool IEC XE software itself
allocate a value from the range of direct representation output variables (%Q), still unused. Factory

default cannot be set to the Reading/Writing Data Size fields, as they will vary according to the

MODBUS data type selected.

ATTENTION:

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the MODBUS

Ethernet Client instance task or any other MODBUS task will stop being executed at the moment it

tries to write in the memory area. This occurs in order to maintain data consistency of memory areas
while MainTask is not running.

4. Configuration

 96

MODBUS Ethernet SERVER

This protocol is available for all Nexto Series CPUs on its Ethernet channels. When selecting this

option at MasterTool IEC XE, the CPU becomes a MODBUS communication server, allowing the
connection with MODBUS client devices. This protocol is only available when the CPU is in

execution mode (Run Mode).

There are two ways to configure this protocol. The first one makes use of direct representation (%Q),
in which the variables are defined by your address. The second one, through symbolic mapping,

where the variables are defined by your name.

The procedure to insert an instance of the protocol is found in detail in the MasterTool IEC XE User

Manual – MU299609.

MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping

To configure this protocol using Symbolic Mappings, it is necessary to execute the following steps:

 Configure the MODBUS server protocol general parameters, as: TCP port, protocol selection, IP

filters for Reading and Writing (available at the Filters Configuration button) and communication
times (available at the Server Advanced Configurations button).

 Add and configure MODBUS mappings, specifying the variable name, data type, data initial

address and data size.

The description of each configuration is related ahead in this chapter.

MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping

The general parameters, found on the MODBUS protocol configuration initial screen (Figure 4-34),

are defined as:

Figure 4-34. MODBUS Server General Parameters Configuration Screen

Configuration Description Default Options

TCP Port TCP port 502 2 to 65534

Connection Mode Protocol selection TCP
RTU via TCP

TCP

Table 4-55. Configurations

Notes:

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface,
different TCP ports must be selected for each instance. Some TCP ports, among the possibilities

mentioned above, are reserved and therefore cannot be used. They are: 80, 8080, 1217, 1740, 1741,

1742,1743 and 11740.

The settings present on the "Filters ..." button, described in Table 4-56, are relative to the TCP

communication filters:

Configuration Description Default Value Options

Write Filter IP

Address

Specifies a range of IPs with write

access in the variables declared in
the MODBUS interface

0.0.0.0
0.0.0.0 to

255.255.255.255

4. Configuration

 97

Write Filter
Mask

Specifies the subnet mask in

conjunction with the parameter IP
filter for writing

0.0.0.0
0.0.0.0 to

255.255.255.255

Read Filter IP

Address

Specifies a range of IPs with read

access in the variables declared in
the MODBUS interface

0.0.0.0
0.0.0.0 to

255.255.255.255

Read Filter

Mask

Specifies the subnet mask in
conjunction with the IP filter

parameter for reading

0.0.0.0
0.0.0.0 to

255.255.255.255

Table 4-56. IP Filters

Note:

Filters: filters are used to establish a range of IP addresses that have write or read access to
MODBUS relations, being individually configured. The permission criteria is accomplished through

a logical AND operation between the Write Mask Filter and the IP address of the client. If the result

is the same as the IP Filter for Writing, the client is entitled to write. For example, if the IP Filter for
Writing = 192.168.15.0 and the Mask Filter for Writing = 255.255.255.0, then only customers with

IP address = 192.168.15. x shall be entitled. The same procedure is applied in the Read Filter

parameters to define the read rights.

The communication times of the MODBUS server protocol, found on the "Advanced ..." button of
the configuration screen, are divided into: Task Cycle and Connection Downtime Time-out.

Configuration Description Default Value Options

Task Cycle

(ms)

Time for the instance execution

within the cycle, without considering
its own execution time.

50 5 to 100

Connection
Inactivity

Time-out (s)

Maximum idle time between client
and server before the connection is

closed by the server.

10 10 to 3600

Table 4-57. Advanced Configurations

Notes:

Task Cycle: the user has to be careful when changing this parameter as it interferes directly in the
answer time, data volume for scanning and mainly in the CPU resources balance between

communications and other tasks.

Connection Inactivity Time-out: this parameter was created in order to avoid that the maximum
quantity of TCP connections is reached, imagining that inactive connections remain open on account

of the most different problems. It indicates how long a connection (client or server) can remain open

without being used (without exchanging communication messages). If the specified time is not

reached, the connection is closed releasing an input in the connection table.

MODBUS Server Diagnostics – Configuration via Symbolic Mapping

The diagnostics and commands of the MODBUS server protocol configured, either by symbolic

mapping or by direct representation, are stored in variables of type
T_DIAG_MODBUS_ETH_SERVER_1 and the mapping by direct representation are in 4-byte and

8-word, which are described in Table 4-58 (n is the value configured in the Initial Address of

Diagnostics in %Q field):

Direct
Representation

Variable

Variable of type
T_DIAG_MODBUS_ETH_SERVER_1 *

Diagnostics

Size Description

Diagnostic bits:

%QX(n).0

tDiag.*

bRunning BIT The server is running

%QX(n).1
bNotRunning BIT

The server is not running (see bit

bInterruptedByCommand)

4. Configuration

 98

%QX(n).2

bInterruptedByCommand BIT

The bit bNotRunning was enabled,

because the server was interrupted
by the user through the command

bit

%QX(n).3 bConfigFailure BIT Discontinued diagnostic

%QX(n).4
bRXFailure BIT Discontinued diagnostic

%QX(n).5
bTXFailure BIT Discontinued diagnostic

%QX(n).6
bModuleFailure BIT Discontinued diagnostic

%QX(n).7
bDiag_7_reserved BIT Reserved

%QB(n+1) byDiag_1_reserved BYTE Reserved

Command bits, restarted automatically:

%QX(n+2).0

tCommand.*

bStop BIT Stop the server

%QX(n+2).1 bRestart BIT Restart the server

%QX(n+2).2 bResetCounter BIT
Reset diagnostics statistics

(counters)

%QX(n+2).3 bDiag_19_reserved BIT Reserved

%QX(n+2).4 bDiag_20_reserved BIT Reserved

%QX(n+2).5 bDiag_21_reserved BIT Reserved

%QX(n+2).6 bDiag_22_reserved BIT Reserved

%QX(n+2).7 bDiag_23_reserved BIT Reserved

%QB(n+3) byDiag_03_reserved BYTE Reserved

Communication statistics:

%QW(n+4)

tStat.*

wActiveConnections WORD
Number of established connections

between client and server (0 to 64).

%QW(n+6) wTimeoutClosedConnections WORD

Connections counter, between the
client and server, interrupted after

a period of inactivity-time-out (0 to
65535).

%QW(n+8) wClientClosedConnections WORD
Connections counter interrupted
due to customer request (0 to

65535).

%QW(n+10) wRXFrames WORD

Ethernet frames counter received

by the server. An Ethernet frame
can contain more than one request

(0 to 65535).

%QW(n+12) wRXRequests WORD

Requests received by the server

counter and answered normally (0
to 65535).

%QW(n+14) wTXExceptionResponses WORD

Requests received by the server
counter and answered with

exception codes (0 to 65535). The
exception codes are listed below:

1: the function code (FC) is legal,
but not supported.

2: relation not found in these data
MODBUS.

3: illegal value for the address.

128: the master/client has no right

to read or write.

129: MODBUS relation is disabled.

%QW(n+16) wRXIllegalRequests WORD
Illegal requests counter (0 to

65535)

%QW(n+18) wDiag_18_reserved WORD Reserved

Table 4-58. MODBUS Server Diagnostics

4. Configuration

 99

Note:

Counters: all counters of the MODBUS Ethernet Server Diagnostics return to zero when the limit

value 65535 is exceeded

Mapping Configuration – Configuration via Symbolic Mapping

The setting of the MODBUS Server mappings, visualized in Figure 4-35, follows the parameters

described in Table 4-59.

Figure 4-35. MODBUS Server Data Mappings Screen

Configuration Description
Default

Value
Options

Value Variable Symbolic variable name -
Name of a variable declared in a

program or GVL

Data Type MODBUS data type -

Coil

Input Status

Holding Register

Input Register

Data Start
Address

Starting address of the
MODBUS data

- 1 to 65536

Absolute Data

Start Address

Start address of absolute data

of Modbus as its type
- -

Data Size Size of the MODBUS data - 1 to 65536

Data Range
The data range address

configured
- -

Table 4-59. MODBUS Ethernet Mappings Configuration

Notes:

Value Variable: this field is used to specify a symbolic variable in MODBUS relation.

Data Type: this field is used to specify the data type used in the MODBUS relation.

Data Start Address: data initial address of the MODBUS relation.

Absolut Data Start Address: Absolute start address of the MODBUS data according to their type.
For example, the Holding Register with address 5 has absolute address 400005. This field is read

only and is available to assist in Client / Master MODBUS configuration that will communicate with

this device. The values depend on the base address (offset) of each data type and allowed MODBUS

address for each data type.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can

access from the initial address. Thus, in order to read a continuous range of addresses, it is necessary

that all addresses are declared in a single relation. This field varies according to the configured type
of MODBUS data.

4. Configuration

 100

Data Range: is a read-only field and reports on the range of addresses that is being used by this

mapping. It is formed by the sum of the fields "Initial Address" and "Size". There can be no range

overlays with others mappings of the same "data type".

ATTENTION:

Unlike other tasks of an application, when a mark is reached at MainTask debugging, the MODBUS

Ethernet Server instance task or any other MODBUS task will stop being executed at the moment it

tries to write in the memory area. This occurs in order to maintain data consistency of memory areas
while MainTask is not running.

MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q)

To configure this protocol using Direct Representation (%Q), the user must perform the following

steps:

 Configure the general parameters of MODBUS Server Protocol, such as: communication times,

address and direct representation variables (%Q) to receive the diagnostics and control relation.

 Add and configure MODBUS relations, specifying the MODBUS data type, direct representation

variables (%Q) to receive/write the data and amount of data to be reported.

The descriptions of each configuration are listed below in this chapter.

General Parameters of MODBUS Server Protocol – Configuration via Direct Representation (%Q)

The general parameters, found on the home screen of MODBUS protocol configuration (Figure

4-36), are defined below.

Figure 4-36. MODBUS Server Setup Screen

TCP port, protocol and direct representation variables (%Q) to control relations and diagnostics:

Configuration Description Default Value Options

%Q Start Address of
Diagnostics Area

Starting address of the
diagnostic variables

- 0 to 2147483628

Size Size of diagnostics 20
Disabled for

editing

TCP Port TCP Port 502 2 to 65534

Mapping Disabling
Starting address used to

disable MODBUS relations
- 0 to 2147483644

4. Configuration

 101

Protocol Protocol selection TCP
RTU via TCP

TCP

Table 4-60. Settings to control relations and diagnostics

Notes:

%Q Start Address of Diagnostics Area: this field is limited by the size of output variables

addressable memory (%Q) at CPU, which can be found in chapter Technical Description - Specific

Features.

TCP Port: if there are multiple instances of the protocol added in a single Ethernet interface,

different TCP ports must be selected for each instance. Some TCP ports, among the possibilities

mentioned above, are reserved and therefore cannot be used. They are: 80, 8080, 1217, 1740, 1741,

1742.1743 and 11740.

Mapping Disabling: composed of 32 bits, used to disable, individually, the 32 MODBUS relations

configured in Server mappings space. The relation is disabled when the corresponding bit is equal to

1, otherwise, the mapping is enabled.

Default Value: the factory default value cannot be set to the Initial Address of Diagnostics in %Q

field, because the creation of a Protocol instance may be held at any time on application

development. The MasterTool IEC XE software itself allocate a value, from the range of output

variables of direct representation (%Q), not used yet.

The communication times of the MODBUS Server protocol, found on the "Advanced ..." button of

the configuration screen, are divided into: Task Cycle (ms) and Connection Downtime Time-out (s).

Further details are described in MODBUS Server Protocol General Parameters – Configuration via
Symbolic Mapping section.

The diagnostics and MODBUS commands are described in Table 4-58.

Mapping Configuration – Configuration via Direct Representation (%Q)

The MODBUS relation configuration, depicted on Figure 4-37 and Figure 4-38, follow the

parameters described on Table 4-61:

Figure 4-37. MODBUS Data Type

4. Configuration

 102

Figure 4-38. MODBUS Function

Configuration Description Default Options

Data Type MODBUS data type Coil

Coil (1 bit)

Holding Register (16 bits)
Input Status (1 bit)

Input Register (16 bits)

Data Start

Address

MODBUS data initial

address
1 1 to 65536

Data Size MODBUS data quantity 8

1 to 65536 (Holding Register
and Input Register)

8 to 65536 (Coil and Input
Status)

IEC Variable
Variables initial address

(%Q)
- 0 to 2147483647

Read-only Allow reading only Disabled Enabled or Disabled

Table 4-61. Server Mappings

Notes:

Options: the values written in the column Options may vary according with the configured

MODBUS data.

Data Size: the Data Size value sets the maximum amount of data that a MODBUS relation can
access from the initial address. Thus, to read a continuous range of addresses, it is necessary that all

addresses are declared in a single relation. This field varies according to the set MODBUS data type,

that is, when selected Coil or Input Status, the field data size must be a number multiple of 8. It is
also important to take care so the maximum value is not greater than the addressable output memory

size and the attributed values aren’t the same already used during the application.

IEC Variable: in case the MODBUS data type is Coil or Input Status (bit), the IEC variables initial
address will be in the format for example %Q10X.1. However, if the MODBUS data type is Holding

Register or Input Register (16 bits), the IEC variables initial address will be in the format %QW. This

field is limited by the memory size of the addressable output variables (%Q) from each CPU, which

can be seen on the Technical Description - Specific Features chapter.

Read-only: when enabled, it only allows the communication master to read the variable data. It does

not allow the writing. This option is valid for the writing functions only.

Default: the default cannot be defined for the IEC Variable field as the creation of a protocol
instance can be made at any moment within the applicative development, making the MasterTool

IEC XE software allocate a value itself from the direct representation output variables range (%Q)

4. Configuration

 103

still not used. The default cannot be defined for the Data Size field as it will vary according to

selected MODBUS data type.

The configurations in the “Filters...” button, described on Table 4-62, are related to the TCP
communication filters:

Configuration Description Default Options

Write Filter IP
Address

Specifies a IP interval with

writing access to the
declared variables in the

MODBUS relation

0. 0. 0. 0 0.0.0.0 to 255.255.255.255

Write Filter

Mask

Specifies a subnet mask

and the parameter Write
Filter IP

0. 0. 0. 0 0.0.0.0 to 255.255.255.255

Read Filter IP

Address

Specifies a IP interval with
reading access to the

declared variables in the
MODBUS relation

0. 0. 0. 0 0.0.0.0 to 255.255.255.255

Read Filter

Mask

Specifies a subnet mask
and the parameter Read

Filter IP

0. 0. 0. 0 0.0.0.0 to 255.255.255.255

Table 4-62. IP Filters of Modbus Server

Note:

Filters: the filters are used to establish an IP addresses interval which have writing or reading access
in the MODBUS relations, individually configured. The permission criteria is made through an AND

logic operation between the Write Filter Mask and the client IP address. In case the result is the same

as the Write Filter IP, the client has writing right. E.g. if the Write Filter IP = 192.168.15.0 and the
Write Filter Mask = 255.255.255.0, then only clients with IP = 192.168.15.x will have writing right.

The same proceeding is applied to the Read Filter parameters to define the reading rights.

In the previously defined relations, the maximum MODBUS data size can be 65536 (maximum value

configured in the Data Size field). However, the request which arrives in the MODBUS Ethernet
Server must address a subgroup of this mapping and this group must have, at most, the data size

depending on the function code which is defined below:

 Read coils (FC 1): 2000

 Read input status (FC 2): 2000

 Read holding registers (FC 3): 125

 Read input registers (FC 4): 125

 Write single coil (FC 5): 1

 Write single holding register (FC 6): 1

 Force multiple coils (FC 15): 1968

 Write holding registers (FC 16): 123

 Mask Write (FC 22): 1

 Read/ Write holding registers (FC 23):

o Read: 121
o Write: 121

ATTENTION:

Differently from other application tasks, when a depuration mark in the MainTask is reached, the

task of an Ethernet Server MODBUS instance and any other MODBUS task will stop running at the
moment that it tries to perform a writing in a memory area. It occurs in order to keep the consistency

of the memory areas data while a MainTask is not running.

4. Configuration

 104

OPC DA

It’s possible to communicate with the Nexto Series CPUs using the OPC DA (Open Platform

Communication Data Access) technology. This open communication platform was developed to be
the standard in industrial communications. Based on client/server architecture, it offers several

advantages in project development and communication with automation systems.

A very common analogy to describe the OPC technology is of a printer. When correctly connected,
the computer needs a driver to interface with the equipment. Similarly, the OPC helps with the

interface between the supervision system and the field data on the PLC.

When it comes to project development, to configure the communication and exchange information

between the systems is extremely simple using OPC technology. Using other drivers, based on
addresses, it’s necessary to create tables to relate tags from the supervision system with variables

from the programmable controller. When the data areas are changed during the project, it’s necessary

to remap the variables and create new tables with the relations between the information on the PLC
with the Supervisory Control and Data Acquisition system (SCADA).

Figure 4-39. OPC Architecture

Figure 4-39 shows an architecture to communicate a SCADA system and PLCs in automation
projects. All the roles present on a communication are explicit on this figure regardless of the

equipment in which it’s executed, since they can be done in the same equipment or in various ones.

Each of the roles of this architecture are described on Table 4-63.

Role Description

Programmable Controllers and
Field Devices Level

The field devices and the PLCs are where the
operation state and plant control information are

4. Configuration

 105

stored. The SCADA system access the information on

these devices and store on the SCADA server, so that
the SCADA clients can consult it during the plant
operation.

Acquisition Network The acquisition network is where the requests for data

collected by field devices travel. to request the data
collected from the field devices.

PLC Communication Gateway A gateway enables the communication between the
OPC Server and Nexto Series PLCs. A gateway in the

same subnet of the PLC is always necessary, as
described in chapter Communication Settings of
MasterTool IEC XE User Manual – MU299609.

OPC Server Modules The OPC Server is a Module responsible of receiving

the OPC DA requests and translate them to the
communication with the field devices.

OPC Client Device Module The OPC Client Device module is responsible for the
requests to the OPC Server using the OPC DA

protocol. The collected data is stored on the SCADA
Server database.

SCADA Server Level The SCADA Server is responsible for connecting to the
various communication devices and store the data

collected by them on a database, so that it can be
consulted by the SCADA Clients.

Supervision Network The supervision network is the network through which
the SCADA Clients are connected to the SCADA

Servers. In a topology in which there aren’t multiple
Client or where the Server and the Client are installed
on the same equipment, this kind of network doesn’t
exist.

SCADA Client Level The SCADA Clients are responsible for requesting to

the SCADA Servers the necessary data to be shown in
a screen where the operation of a plant is being
executed. Through then it is possible to execute

readings and writings on data stored on the SCADA
Server database.

Table 4-63. Roles Description on an OPC Server Architecture

The relation between the tags on the supervision system and the process data on the controller

variables is totally transparent. This means that, if there’s an alteration on the data areas through the

development of the project, it isn’t necessary to rework the relations between the information on the
PLC and the SCADA, just use the new variable provided by the PLC on the systems that request that

data.

The use of OPC offers more productivity and connectivity with SCADA systems. It contributes with
the reduction of applications development time and with the maintenance costs. It even makes

possible the insertion of new data on the communication in a simplified form and with greater

flexibility and interoperability between the automation system, due to the fact that it’s an open

standard.

The installation of the OPC Server is done altogether with MasterTool IEC XE installation, and its

settings are done inside the tool. It’s worth notice that the OPC is available only with the local

Ethernet interface of the Nexto CPUs. The Ethernet expansion modules do not support this
functionality.

Creating a Project for OPC Communication

Unlike the communication with drivers such as MODBUS and PROFIBUS DP, to set an OPC

communication it’s only necessary to correctly set the node and indicate which variables will be used
in the communication. There are two ways to indicate which variables of the project will be available

in the OPC Server. In both cases it’s necessary to add the object Symbol Configuration to the

application, in case it isn’t present. To add it, right-click over the object Application e select the
option.

4. Configuration

 106

ATTENTION:

The variables shown in the objects IoConfig_Globals, IoConfig_Application_Mappings e

IoConfig_Global_Mappings are used internally for I/O control e shouldn’t be used by the user.

ATTENTION:

In addition to the variables declared at SFC language POUs, some implicitly created variables are

also shown. To each step created, a type IecSfc.SFCStepType variable is created, where the step

states can be monitored, namely whether it is active or not and the time that it’s active as in norm
IEC61131-1. To each transition, a BOOL type variable is created that defines if the transition is true

or false. These variables are shown in the object Symbol Configuration that can be provided access

to the OPC Client.

Figure 4-40. Symbol Configuration object

The Table 4-64 presents the descriptions of the Symbol Configuration object screen fields.

Field Description

Symbols Variable identifier that will be provided to the OPC

Server

Access Rights Indicate what the possible access right level are in the

declared symbol. When not utilized, this column
remains empty, and the access right level is maximum.

Otherwise the access right level can be modified by
clicking over this field. The possible options are:

Read only

Write only

Read and Write

Maximal Indicates the maximum access right level that is
possible to assign to the variable. The symbols hold

the same meanings from the ones in Access Rights.
It’s not possible to change it and it’s indicated by the
presence or not of the {attribute 'symbol'}

Attribute Indicates if {attribute 'symbol'} is being used when the

variable is declared. When not used, this column
remains empty. For the cases in which the attribute is
used, the behavior is the following:

{attribute 'symbol' := 'read'} the column shows

4. Configuration

 107

{attribute 'symbol' := 'write'} the column shows

{attribute 'symbol' := 'readwrite'} the column shows

Type Data type of the declared variable.

Members When the data type is a Struct, a button is enabled in
this column. Clicking on the button will allow the

selection of which elements of that struct will be
provided to the OPC Server.

Comment Variable comment, inserted on the POU or GVL where
the variable was declared. To show up as a variable

comment here, the comment must be entered one line
before the variable on the editor, while in text mode, or
in the comment column when in tabular mode.

Table 4-64. Symbol Configuration object screen fields description

When altering the project settings, such as adding or removing variables, it’s necessary to run the
command Build, in order to refresh the list of variables. This command must be executed until the

message in Figure 4-40 disappear. After this, all available variables in the project, whether they are

declared on POUs, GVLs or diagnostics, will be shown here and can be selected. The selected
variables will be available on the OPC Server to be accessed by the Clients.

Figure 4-41. Selecting Variables on the Symbol Configuration

After this procedure, the project must be loaded into a PLC so the variables will be available for
communication with the OPC Server. If the object Symbol Configuration screen is open and any of

the variables, POUs or GVLs selected is changed, its name will appear with the red color. The

situations in which this may happen is when a variable is deleted or the attribute value is modified.

It’s also possible to set which variables will be available on the OPC Server through an attribute

inserted directly on the POUs or GVLs where the variables are declared. When the attribute

{attribute 'symbol'} is present on the variable declaration, and it may be before the definition of the
POU or GVL name, or to each variable individually, these variables are sent directly to the object

Symbol Configuration, with a symbol in the Attribute column. In this case it’s necessary, before

loading the project into the CPU, to run the command Build from within the object Symbol

Configuration.

The valid syntaxes to use the attribute are:

 {attribute 'symbol' := 'none'} – when the attribute value is ‘none’, the variables won’t be

available to the OPC Server and won’t be shown in the object Symbol Configuration screen.

4. Configuration

 108

 {attribute 'symbol' := 'read'} – when the attribute value is ‘read’, the variables will be available to

the OPC Server with read only access right.

 {attribute 'symbol' := 'write'} – when the attribute value is ‘write’, the variables will be available

to the OPC Server with write only access right.

 {attribute 'symbol' := 'readwrite'} – when the attribute value is ‘read’, the variables will be

available to the OPC Server with read and write access right.

In the following example of variable declaration, the variables A and B settings allow that an OPC

Server access them with read and write access. However the variable C cannot be accessed, while the

variable D can be accessed with read only access rights.

{attribute 'symbol' := 'readwrite'}

PROGRAM MainPrg

VAR

A: INT;

B: INT;

{attribute 'symbol' := 'none'}

C: INT;

{attribute 'symbol' := 'read'}

D :INT;

END_VAR

When a variable with a type different from the basic types is defined, the use of the attribute must be

done inside the declaration of this DUT and not only in the context in which the variable is created.

For example, in the case of a DUT instance inside of a POU or a GVL that has an attribute, it will not

impact in the behavior of this DUT instance elements. It will be necessary to apply the same access
right level on the DUT declaration.

ATTENTION:

The configurations of the symbols that will be provided to the OPC Server are stored inside the PLC

project. By modifying these configurations it’s necessary to load the application on the PLC so that
it’s possible to access those variables.

ATTENTION:

When a variable is removed from the project and loaded on the PLC unchecking it from the object
Symbol Configuration, the variable can no longer be read with the OPC Client. If the variable is

added again to the project, with the same name and same context, and inserted on the object Symbol

Configuration, it will be necessary to reboot the OPC Client to refresh the variable address
reference, which will be created on a different memory area of the PLC.

Configuring a PLC on the OPC Server

The configuration of the PLC is done inside MasterTool IEC XE through the option available in the

Online menu. It’s necessary to run MasterTool IEC XE as administrator.

4. Configuration

 109

Figure 4-42. OPC Server Settings

The Gateway Configuration is the same set in the Gateway used for the communication between the

MasterTool IEC XE and the PLC and described in Communication Configuration, present in the
MasterTool IEC XE User Manual – MU299609. If the configuration used is localhost, the Gateway

Address must be filled with 127.0.0.1. This configuration is necessary because the OPC Server uses

the same communication gateway and the same protocol used for communication between PLC and
MasterTool IEC XE.

There’s the option Using the Gateway Embedded in PLC that can be selected when it’s desired to use

the Gateway that is in PLC itself. This option can be used to optimize the communication, since it

prevent excess traffic through a particular station, when more than one station with OPC Client is
connected to the same PLC.

To configure the PLC, there a two possible configuration types, depending on the selection of the

checkbox Use TCP/IP Blockdriver. When the option isn’t selected, the field Device Name must be
filled with the name of the PLC. This is the name displayed by the PLC selected as active in the

Communication Settings screen.

The other option is to use the IP Address of the Ethernet Interfaces. The same address set on the
configuration screens must be put in this field. Furthermore, when this method is used, the port

number must be set to 11740. The confirmation will save the OPC Server configurations.

Device Configuration Description Default Setting Possibilities

Name PLC description

inside the OPC
Server configuration
file. This field can

have any name, but
for organizational
purposes, it’s

‘PLC1’ This field is a

STRING and it
accepts alphanumeric
(letters and numbers)

characters and the “_”
character. It’s not
allowed to initiate a

4. Configuration

 110

recommended to use

the project name that
is loaded in the PLC.

STRING with

numbers or with “_”. It
allows up to 49
characters.

Gateway Address IP Address of the

computer that the
OPC Server is
installed, for the

cases in which all
PLCs are in the same
subnetwork. If there’s

some PLC that it’s in
another subnetwork,
it must be specified

the Gateway used in
that subnetwork.

127.0.0.1 0.0.0.0 to

255.255.255.255

Gateway Port TCP Port for the
connection with the

Gateway.

1217 2 to 65534

Device Name It’s the PLC name

displayed in the
communication

Settings tab. The
name is the STRING
before the

hexadecimal value
that is between [].
Enabled only when
the checkbox Use
TCP/IP Blockdriver is

not selected.

‘0000’ This field is a

STRING and it
accepts any

characters, as done in
the PLC name
configuration in the

Device
Communication
Setting tab. It allows

up to 49 characters.

IP Address Active IP address of the

PLC. Enabled only
when the checkbox
Use TCP/IP

Blockdriver is

selected. It is used
only when the setting

is not redundant.

192.168.15.1 0.0.0.0 to

255.255.255.255

IP Address PLC A IP address of the

CPA. Enabled only
when the
configuration is

redundant. It is the
primary PLC address
to which the server

will communicate if
there is no failure.

192.168.15.69 0.0.0.0 to

255.255.255.255

IP Address PLC B IP address of the
CPB. Enabled only

when the
configuration is
redundant. It is the

secondary PLC
address to which the
server will

communicate if a
failure occurs.

192.168.15.70 0.0.0.0 to
255.255.255.255

Device Port TCP Port. Enabled
only when the
checkbox Use
TCP/IP Blockdriver is

selected.

11740 11740 or 11739

Table 4-65. Configuration Parameter of each PLC for the OPC Server

When a new PLC needs to be configured on the OPC Server, simply press the New PLC button and

the configuration will be created. When the setup screen is accessed, a list of all PLCs already

configured on the OPC Server will be displayed. Existing configurations can be edited by selecting

4. Configuration

 111

the PLC in the Devices list and editing the parameters. The PLCs settings that are no longer in use

can be deleted. The maximum number of PLCs configured in an OPC Server is 16.

If the automation architecture used specifies that the OPC server must be ran on a computer that does
not execute communication with the PLC via MasterTool IEC XE, the tool must be installed on this

computer to allow OPC Server configuration in the same way as done in other situations.

ATTENTION:

To store the OPC Server configuration, the MasterTool IEC XE must be run with administrator
rights on the Operational System. Depending on the OS version, this privilege must be done in the

moment that the program is executed: right-click the MasterTool IEC XE icon and choose Run as

Administrator.

ATTENTION:

The settings of a PLC on the OPC Server are not stored in the project created in MasterTool IEC

XE. For this reason, it can be performed with an open or closed project. The settings are stored in a
configuration file where the OPC Server is installed. When changing the settings, it is not required to

load the application on the PLC, but depending on the OPC Client it may be necessary to reconnect

to the server or load the settings for the data to be updated correctly.

Importing a Project Configuration

Using the button Read Project Configuration, as shown in Figure 4 42, you can assign the

configuration of the open project to the PLC configuration that is being edited. For this option to

work correctly, there must be an open project and an Active Path should be set as described in

Communication Settings, present in the MasterTool IEC XE User Manual – MU299609. If any of
these conditions is not met an error message will be displayed and no data will be modified.

When the above conditions are valid, the PLC settings receive the parameters of the opened project.

The IP Address and gateway port information are configured as described in Communication

Settings according to the Active Path. However, the IP address settings are read from NET1 Ethernet

interface settings. The port for connection to the PLC is always assigned in this case as 11740.

Configuration with the PLC on the OPC Server with Connection Redundancy

It’s possible to configure the OPC Server for it to operate with connection redundancy. This way, the

OPC Server will communicate preferably with one PLC, but when, by any reason, it can’t establish

communication with this PLC, a second PLC, also configured, will be accessed. This configuration is

especially important for the communication between SCADA systems and the Nexto Series PLCs
with Half-Cluster redundancy, where there’s a PLC in active state executing the process, and another

PLC in stand-by state, ready to take control of the process if some kind of failure occurs.

The project setup in these cases is similar to what is described in Creating a Project for OPC
Communication. However, when a Project is created with Redundant Half-Cluster and the

communication with the supervisory system will be through the OPC Server, it’s necessary to select

the OPC Redundancy Configuration option as enabled during the MasterTool IEC XE Project
Creation Wizard. By enabling this option, the project will create the code needed to run the

communication with OPC connection redundancy.

In the redundant case, a variable is declared within the POU named NonSkippedPrg. This POU is

executed in both PLCs, regardless of redundancy state. Within this POU, a BOOL type variable is
created, used to control the connection with the OPC Server named OPCRedundancyActive. This

variable can be accessed from any application point through the whole context, i.e.

Application.NonSkippedPrg.OPCRedundancyActive. It is declared in the Symbol Configuration
object with the right read only by the SCADA. When the value of the variable is TRUE, data is read

by connecting with this PLC. This way, every time there is a status change among PLCs, the variable

4. Configuration

 112

state will also change, remaining in the state TRUE in the PLC which is in the redundancy active

state.

The NonSkippedPrg program code, in ST language, is as follow:

PROGRAM NonSkippedPrg

VAR

 {attribute 'symbol' := 'read'}

 OPCRedundancyActive : BOOL;

END_VAR

IF fbRedundancyManagement.m_fbDiagnosticsLocal.eRedState =

REDUNDANCY_STATE.ACTIVE THEN

 OPCRedundancyActive := TRUE;

ELSE

 OPCRedundancyActive := FALSE;

END_IF

The NonSkippedPrg program code can be edited as long as the user watch out not to change the
above code. This code tests the state of redundancy and writes a BOOL type variable called

OPCRedundancyActive with it. If the PLC is the active, the variable value is TRUE, otherwise it’s

FALSE. This variable receives the attribute 'symbol': = 'read' to allow the OPC Server to access the

content and define where the information should be read.

If it’s decided to add OPC communication after the creation of the project, it is possible to configure

the OPC by adding the above code in the NonSkippedPrg program and adding the Symbol

Configuration object to the project.

For the configuration of the redundant PLC on the OPC Server, it’s necessary to enable the

Redundancy Configuration option in the configuration screen as shown in Figure 4-42. When this

option is selected, the option Use Driver Blocking TCP / IP will always be used. In addition, the IP

Address PLC A and IP Address PLC B fields will be enabled as described in Table 4-65. These IP
Addresses are configured in the same Ethernet interfaces within the PLC project with Half-Cluster

redundancy. For ease of configuration when a redundant project is open, the Read Project

Configuration button can be used.

ATTENTION:

The OPC Server connection redundancy is done through only one Server. For the cases in which a

better data availability for the supervision systems is desired, a redundant SCADA Server

architecture must be adopted. In this cases it isn’t required any OPC Server configuration. Refer to
the SCADA system documentations to see which configurations are needed for the operation of the

redundant architecture.

OPC Communication Quality and Status Variables

For each PLC created in the OPC Server, status variables are generated, named_CommState and
_ComStateOK. The _CommState variable indicates the communication between the OPC and the

PLC state. This state can interpreted by the OPC Clients according to Table 4-66.

State Value Description

STATE_TERMINATE -1 If the communication between the OPC Server and the
OPC Client is terminated, this value will be returned.

When there’s more than one OPC Client
simultaneously connected, this return will occur on the
disconnection of the latter connected one. Besides the

fact that this state is in the variable, it’s value can’t be
visualized because it only changes when there’s no
longer a connection with the client

STATE_PLC_NOT_CONNECTED 0 The PLC configured on the OPC Server is not

connected. It can happen if the configuration is
incorrect (wrong PLC and/or Gateway IP Address) or
the PLC is unavailable in that moment.

STATE_PLC_CONNECTED 1 The PLC configured in the OPC Server is connected.

4. Configuration

 113

This is a transitory state during the connection.

STATE_NO_SYMBOLS 2 There are no symbols (variables) available in the PLC

configured in the OPC Server. It can happen when
there are no symbols or there isn’t a project loaded on
the PLC.

STATE_SYMBOLS_LOADED 3 Finished the process of reading the symbols (variables)

from the PLC configured in the OPC Server. This is a
transitory state during the connection.

STATE_RUNNING 4 After the reading of the symbols (variables) the OPC
Server is running the periodic update of the values of

the available symbols in each configured PLC.

STATE_DISCONNECT 5 There has been a disconnection with the PLC

configured in the OPC Server.

STATE_NO_CONFIGURATION 6 When the OPC configuration (stored in a
OPCServer.ini file) has a wrong syntax, the variable

value will be this. Generally, this behavior is not
observed for the MasterTool IEC XE maintains this
configuration valid.

Table 4-66. Description of the Communication states between OPC Server and the PLC

The_CommStateOk is a variable of the Bool type that indicates if the communication between the

OPC Server and the PLC is working. When the value is TRUE, it indicates that the communication is

working correctly. If the value is FALSE, for some reason it isn’t possible to communicate with the

PLC.

In addition to monitoring the communication status, the OPC Client can access information on the

quality of communication. The quality bits form a byte. They are divided into three groups of bits:

Quality, Substatus and Limit. The bits are distributed as follows QQSSSSLL in which QQ are the
Quality bits, SSSS Substatus bits and LL limit bits. In this case the QQ bits are the most significant in

the byte, while the LL bits are the least significant.

QQ Bits values Definition Description

0 00SSSSLL Bad
The value read can’t be used because there’s some

problem with the connection. It’s possible to monitor
the value of_CommState and diagnose the problem.

1 01SSSSLL Uncertain
The quality can’t be defined and may be presented in
the Substatus field.

2 10SSSSLL NA
This value is reserved and isn’t used by the OPC
standard.

3 11SSSSLL Good The quality is good and the value read can be used.

Table 4-67. Description of the OPC Quality value

Table 4-67 presents the possible quality values. The OPC Server only returns Good and Bad Quality
values. A OPC Client can maintain the quality as Uncertain due to failures in which it can’t establish

a connection to the Server. In case of monitoring of the 8 quality bits directly from the OPC Server,

the Substatus and Limit fields shall be null e a Good Quality will be presented as the value 192 and a
Bad Quality will be value 0.

OPC Server Communication Limits

To communicate with the OPC Server, there are some limitations that must be respected for the

correct functioning of the application. There can’t be more than 20.000 variables configured as
available in the OPC Server for each PLC. Therefore, 20.000 variables is the maximum limit to

communicate with a single PLC.

Furthermore, when configuring the variables to be available in the OPC Server, the quantity of
declared variables in each POU or GVL can’t exceed the limit of 5.000. Table 4-68 presents the

OPC Server configuration limits.

4. Configuration

 114

Maximum number of variables

communicating with a single
PLC

20.000

Maximum number of variables

declared in a single POU or GVL
5.000

Maximum number of PLCs in a

OPC Server
16

Maximum number of
simultaneous connections of an

OPC Server in a single PLC

8

Table 4-68. OPC Server Communication Limits

ATTENTION:

The Maximum number of simultaneous connections of an OPC Server in a single PLC is shared
with connections made with the MasterTool IEC XE. I.e. the sum of connections of OPC Server and

MasterTool IEC XE should not exceed the maximum quantity defined in Table 4-68.

The communication between the OPC Server and the PLC uses the same protocol used in the

MasterTool IEC XE communication with the PLC. This protocol is only available for the Ethernet
interfaces of the Nexto Series CPUs, it’s not possible to establish this kind of communication with

the Ethernet expansion modules.

When a communication between the OPC Server and the PLC is established, these two elements start
a series of transactions aimed at solving the addresses of each declared variables, optimizing the

communication in data reading regime. Besides, it’s also resolved in this stage the communication

groups used by some Clients in order to optimize the communication. This initial process demands

some time and depends on the quantity of mapped variables.

The approximate time of this initial stage, with 5.000 variables is about 2 minutes. In cases in which

more variables are used, this time can raise to up to 4 minutes, depending on the data type and

network settings.

Accessing data Through an OPC Client

After the configuration of the OPC Server, the available data on all PLCs can be accessed via an

OPC Client. In the configuration of the OPC Client, the name of the OPC Server must be selected. In
this case the name is CoDeSys.OPC.DA. The Figure 4-43 shows the server selection on the client

driver of the BluePlant SCADA software,.

ATTENTION:
The same way that in MasterTool IEC XE, some tools must be executed with administrator

privileges in the Operational System for the correct functioning of the OPC Client. Depending on the

OS version, this privilege must be activated in the moment that the program is executed. To do this,

right-click MasterTool IEC XE icon and choose Run as Administrator.

4. Configuration

 115

Figure 4-43. Selecting the OPC Server in the Client Configuration

In cases where the server is remotely located, it may be necessary to add the network path or IP
address of the computer in which the server is installed. In these cases, there are two configuration

options. The first is to directly configure it, being necessary to enable the COM/DCOM Windows

Service. However, a simpler way is to use a tunneller tool that abstracts the COM / DCOM settings,
and enable a more secure communication between the Client and the Server. For more information

on this type of tool, refer to a NAP151 - Tunneller OPC. Once the Client connects with the Server,

it’s possible to use the TAGs import commands. These commands consult the information declared

in the PLC, returning a list with all the symbols available in it.

Figure 4-44. Symbols list consulted by the OPC Client

The list of selected variables will be included in the Client communication list and can be used, for

example, in a SCADA system screen.

4. Configuration

 116

ATTENTION:

The simulation mode of MasterTool IEC XE software can be used for OPC communication tests.
The information on how to configure it are presented in the Testing an OPC Communication using

the Simulator section of the Master Tool IEC XE User Manual – MU299609.

EtherCAT

EtherCAT (Ethernet Control Automation Technology) is a master-slave architecture protocol with
high performance, for deterministic Ethernet, that allows real time performance as it updates 1000

distributed I/O in 30µS or 100 servomotors axis each 100µS using twisted pair cables or optic fiber.

Besides, it supports flexible topology, allowing for line, tree and/or star connections.

An Ethernet frame can be processed in real time instead of being received, interpreted and copied as
process data in each connection. The FMMU (Fieldbus Memory Management Unit) in each Slave

node reads the data that are addressed to it at the same time that the telegram is forwarded to the next

device. In a similar way, the input data are inserted as the telegram is passed. Because of this, the
frames are delayed just a few nanoseconds. Access on the Ethernet terminals can be made in any

order as the data sequence is independent of the physical order. It can perform Broadcast, Multicast

and between slaves communications.

The EtherCAT protocol allows a precise synchronization, that is required, for example, in

applications where several axis simultaneously perform coordinated movements, it can be done

through an exact adjust of the Distributed Clock. There’s also the possibility to configure devices

that, as opposed to synchronous communication, have an elevated tolerance degree inside the
communication system.

The configuration of EtherCAT modules is initially determined by the Device Description Files of

the Master and Slave devices used, and can be modified by the user in the Configuration Editor
dialog boxes. However, for conventional applications and with the desire of an as easy as possible

manipulation, large-scale configurations can be automated by choosing the Autoconfiguration mode

in Master Parameters.

Note the possibility of modifying the Master and Slave configuration parameters also in operational
mode, through the Master and Slave instances, according to the availability of the device in question.

Installing and inserting EtherCAT Devices

In order to be able to insert and configure EtherCAT devices as objects in the device tree, the Slave
devices must be installed.

The Master device is automatically installed by the default MasterTool IEC XE installation. The

EtherCAT Master defines which Slaves can be inserted.

To install the Slave devices the Device Repository must be opened, use the EtherCAT XML Device

description Configuration File (*.xml) filter and select the device description files (EtherCAT XML

Device Description / ESI EtherCAT Slave Information), supplied with the hardware. The Slave

descriptions are available as XML files (file type: *.xml).

An EtherCAT Master can be added to the Devices Tree through the Add Device command, through

the context menu of the CPU NET connectors.

Under a master, one or more slaves can be added, selecting an EtherCAT Master and running the Add
Device command (context menu of the EtherCAT Master) or running the Scan command.

In addition to the line and tree topologies, MasterTool IEC XE also supports the star topology in

EtherCAT. For the configuration of an EtherCAT star topology, special EtherCAT junctions are
needed (in the example: Beckhoff EK1122). A modular star EtherCAT can be done using various

junctions. Individual devices or a complete EtherCAT line section can be connected in the junction

4. Configuration

 117

ports. A EherCAT junction is marked with the icon. The Device Tree example in Figure 4-45
shows different possibilities.

Figure 4-45. EtherCAT configuration example

ATTENTION:
- Only one EtherCAT Master instance per project is allowed.

- Only supported by the NX3020 and NX3030 CPU models.

- Only available on the NET connectors of the PLC.

- It cannot be used when the NETs are set as redundant.
- It cannot be used when Project has cluster redundancy.

- Other drivers cannot be instanced in the same NET port as the EtherCAT Master.

- It supports a maximum of 128 EtherCAT slaves per project.

Scan For Devices

The Scan for Devices command, available in the EtherCAT Master context menu, runs a search for

the Slave devices physically installed in the EtherCAT network of the PLC currently connected. This

means that with this command it’s possible to detect and visualize the hardware components in the
window presented in the figure bellow, allowing the user to map them directly in the project Device

Tree.

It’s noteworthy that, when the Scan for Devices command is selected, a connection with the PLC will
be automatically established before the search begins and terminated when the search ends. So, for

the first execution of this command, the Gateway connection must be configured and a program with

the EtherCAT Master configured must be loaded into the PLC. In case of future additions of Slave

devices, in order to run this command, it’s necessary that the EtherCAT network is stopped. To do
this, put to TRUE the bStopBus bit, present in the variables of the EtherCAT Master Diagnostics.

When the command is executed, the Scanned Devices field will contain a list of all devices and

modules found during the last scan. To add them to the project, just click on the button Copy All
Devices To Project. It’s also possible to perform a comparison of the devices found in the search with

the ones in the project by selecting the box Show differences to project.

If you add an EtherCAT Master module to the Project and use the Scan for Devices command, you
will have a list of all the available EtherCAT Slaves. Entries in bold will be shown, if there’s more

4. Configuration

 118

than one device with the same description. With a double click on the entrance a list will open, and

so the desired device can be selected.

After completing the changes in the EtherCAT network configuration, it’s necessary to do a new
project download, for the changes to take effect.

Figure 4-46. EtherCAT Devices Search Dialog

Diagnostic Variables

By inserting an EtherCAT Master and Slave, a diagnostic variable is added for the device in the GVL

Diagnostics. This variable provides information on the device status. There are two types of

variables, one for the EtherCAT Master and one for the EtherCAT slaves. Each variable has specific

information about the device. The diagnostic and commands supplied are described in the following
tables.

Variable

DG_EtherCAT_Master*
Type Possible Values Description

tDiag.bRunning BOOL FALSE or TRUE

If this variable is TRUE, the transfer of all

configuration parameters was successfully
completed without errors found and the bus was
not stopped by user command. Communication is

running.

tDiag.bError BOOL FALSE or TRUE

This variable will be TRUE if an error is detected

during startup of the EtherCAT stack or during
operation, communication with the slaves is

stopped if any more messages can be received
(e.g. due to a fault in the cable). The cause of the
error can be discovered with the aid of the logs list
via error STRING.

tDiag. eLastErrorCode ETC_LASTERROR
The information regarding the possible values for

this diagnostic, as well as it description, can be
found in Table 4-70.

tDiag.bDistributedClock BOOL FALSE or TRUE If DC is used, the PLC will be synchronized with

4. Configuration

 119

InSync the first EtherCAT slave whose DC setting is

active. This variable is TRUE shortly after this
synchronization is successfully completed. This
signal, for example, can be used to initialize

SoftMotion function blocks in case of compatibility
with the device after the CLP is in synchronized
mode, otherwise jumps in position may occur. At

the PLC startup this variable is FALSE and will
change to TRUE after a few seconds. If
synchronization is lost due to any failure, the

variable will change to FALSE.

tDiag.bReserved_00 BOOL - Reserved space.

tDiag.bReserved_01 BOOL - Reserved space.

byReserved_00 BYTE - Reserved space.

tCommand.bRestart BOOL FALSE or TRUE
In rising edge, the master will restart completely.

All configuration parameters will be reloaded.

tCommand.bStopBus BOOL FALSE or TRUE

When this variable is TRUE, the communication is
stopped. EtherCAT packages will not be sent. On

most devices a restart is required, because they
are in an error state.

tCommand.

wDCInSyncWindow
BOOL 0..65535

Time window to bDistributedClockSync. Jitter
must be inside this window so that the

bDistributedClockSync stays TRUE. Default value:
50 microseconds.

tCommand.
bySlaveUpdatedbyCycl

e

BOOL 0..128

This value defines the number of slaves that will

be read each cycle to fill the slaves diagnostic
variables. Value 0 means that no slave diagnostic

will be updated.

tCommand.

bReserved_00
BOOL -

Reserved space.

tCommand.
bReserved_01

BOOL -
Reserved space.

byReserved_01 BYTE - Reserved space.

Table 4-69. EtherCAT Master Diagnostics and Commands

Code Enum Description

00 NO_ERROR No error, running.

01 NO_COMM
No communication. Over 100 packages weren’t received. Possible
failure in the master cable.

02 WRONG_WORKING_COUNTER
Working counter to processdata is wrong. One or more slaves aren’t

operational or missing and the expected working counter isn’t found.

03 DC_TIME_ZERO
Slave DC Time is always zero -> maybe IN and OUT connectors are

wrong and no time can be read from the time reference.

04 OPEN_FIRSTADAPTER_FAILED First network adapter can’t be opened.

05 OPEN_SECONDADAPTER_FAILED Second network adapter can’t be opened.

06 ADAPTER_MISMATCH Second network adapter uses the MAC-ID as first interface.

07 NO_SLAVES_FOUND
Error in slaves startup: There’s possibly missing slaves or with no

communication.

08 VENDOR_ID_WRONG VendorID is not equal.

09 PRODUCT_ID_WRONG ProductID is not equal.

10 NUMBER_DEVICE_MISMATCH
Reading ProductID or Vendor ID is unsuccessful, more slaves in the
configuration than in real architecture.

11 SDO_WRITE_ERROR SDO writing error during startup.

12 SDO_TIMEOUT SDO timeout during startup.

13 EMERGENCY_RECEIVED Emergency received from the device.

14 IDN_WRITE_ERROR IDN writing error during startup.

15 IDN_TIMEOUT IDN timeout during startup.

Table 4-70. EtherCAT Master Error Codes

4. Configuration

 120

Variable

DG_Slave*
Type Possible Values Description

tDiag.wState
ETC_SLAVE_STA

TE

ETC_SLAVE_BOOT=3

ETC_SLAVE_INIT=1

ETC_SLAVE_PREOPERATIO

NAL=2

ETC_SLAVE_SAVEOPERATI

ONAL=4

ETC_SLAVE_OPERATIONAL

=8

Current Slave State.

tDiag.
dwVendorID BOOL Any DWORD

After the EtherCAT stack initialization, this
variable return the VendorID read from the

slave.

tDiag.

dwProductID
ETC_LASTERROR

Any DWORD After the EtherCAT stack initialization, this

variable returns the ProductID read from the
slave.

tDiag.

dwRevisionID
BOOL

Any DWORD After the EtherCAT stack initialization, this
variable return the RevisionID read from the

slave.

tDiag.
tLastEmergency

.

ETC_CO_Emergen

cy

If a message is received then this information

is stored in the slave and it can be read in the
application through this variable. Also a log

message is added. More information about
this diagnosis is found in Table 4-72.

tDiag.bReserved
_01

BOOL -
Reserved space.

byReserved_00 BYTE - Reserved space.

Table 4-71. EtherCAT Slave Diagnostics

Variable
DG_Slave.tDiag.tLa

stEmergency.*

Type Hexa Code Description

wErrorCode WORD

00XX Reset Error or No Error.

10XX Generic Error.

20XX Current.

21XX Current, inside the device

22XX Current inside the device.

23XX Current, outside the device.

30XX Voltage .

31XX Main Voltages.

32XX Voltage inside the device.

33XX Output voltage.

40XX Temperature.

41XX Ambient Temperature.

42XX Device Temperature.

50XX Device Hardware.

60XX Device Software.

61XX Internal Software.

62XX User Software.

63XX Data Set.

70XX Additional Modules.

80XX Monitoring.

81XX Communication.

82XX Protocol Error.

8210 PDO not processes due to length error.

8220 PDO length exceeded.

4. Configuration

 121

90XX External Error.

A000 Unsuccessful PRE- OPERATIONAL to SAFE-

OPERATION transition.

A001 Unsuccessful SAFE- OPERATIONAL to OPERATION
transition.

F0XX Additional Functions.

FFXX Device Specific.

byErrorRegister BYTE Faixa BYTE Register error.

tDiag.tLastEmergen
cy.abyErrorField

ARRAY[0..5] OF BYTE

0000-9FFF Manufacturer Specific Error Field.

A000-EFFF Diagnostic Data.

F000-FFFF Manufacturer Specific Error Field.

Table 4-72. ETC_CO_Emergency Content

EtherCAT Master Settings

Below are listed the options to carry out the EhterCAT Master configuration, such as defined in

Device Description File.

Master Parameters

Below are the general parameters found in the initial screen of the EtherCAT Master configuration,

Figure 4-47.

Figure 4-47. EtherCAT Master Configuration Dialog

Device Configuration Description Factory Default Possible Values

Autoconfig
Master/Slaves

Enable the Master and
Slave automatic

configuration.

Marked
Marked

Unmarked

Cycletime [µs]

Sets the time period in

which a new data
telegram must be send to
the bus.

100000 2000 to 1000000

Sync Offset [%]

Adjust the offset, from the

PLC cycle, of the
EtherCAT Slave
synchronization interrupt.

20 -50 to 50

4. Configuration

 122

Sync Window
Monitoring

If enabled, this option

allows monitoring the
Slave synchronization.

Unmarked
Marked

Unmarked

Synch Window [µs]
Time for the Sync

Window Monitoring.
1 1 to 32768

Use LRW instead of

LWR/LRD

Enabling of the combined
read and write

commands.

Unmarked
Marked

Unmarked

Enable Messages

per Task

If enabled, the read and

write commands that are
dealing with input and

output messages can be
done in different tasks.

Unmarked
Marked

Unmarked

Auto Restart Slaves
Restart the devices when
the communication is

aborted.

Marked
Marked

Unmarked

Number of Devices

Read per Cycle

Sets the number of

Slaves that are read per
cycle to fill the diagnostic

variables. The value '0'
means that no Slave
diagnostic will be

updated.

128 0 to 128

Image In Address
First input address of the

first Slave.
16#1000000 16#1 to 16#1F000000

Image Out Address
First output logic address

for the first Slave.
16#2000000 16#1 to 16#1F000000

Table 4-73. EtherCAT Master Configuration

Notes:

Autoconfig Master/Slaves: If this option is enabled, most of Master and Slave configuration will be

made automatically, based on the description files and implicit calculations. In this case, the FMMU /
Sync dialog will not be available. If it’s unchecked the Image In Address and Image Out Address

options will be available to the user.

ATTENTION:

The Autoconfig mode is enabled by default and usually enough and highly recommended for
standard applications. If it’s disabled, all configuration definitions will have to be made manually,

and thus, some specialized knowledge is required. To configure a Slave-to-Slave communication,

the Autoconfiguration option must be disabled.

Cycletime: Time period after which, a new data telegram must be sent to the bus. If Distributed
Clock functionality is enabled, the value of this parameter will be transferred to the Slaves clocks.

This way, a precise data exchange synchronization can be achieved, which is especially important in

cases where the distributed process demands simultaneous actions. So, a very precise time base, with
a jitter significantly smaller than a microsecond, for all the network can be achieved.

Sync Offset: This value allows the adjustment of the offset of the EtherCAT Slave synchronization

interrupt to the PLC cycle. Normally, the PLC task cycle begins 20% later than the Slaves
synchronization interruption. This means that the PLC task can be delayed by 80% of the cycletime

and no message will be lost.

Sync Window: If the synchronization of all Slaves are inside this time window, the EtherCAT

Master bDistributedClockInSync diagnostic will be set to TRUE, otherwise it will be set to FALSE.

When Distributed Clock is used, it’s highly recommended to use a dedicated task with high priority

as the Bus Cycle Task of the EtherCAT Master. To do this, it’s necessary to use Project Profiles that

allows the creation of new tasks, then create a cyclic task with priority 0 (real time task) and link it to
the master Bus Cycle Task on the EtherCAT I/O Mapping tab of the EtherCAT Master. The user can

4. Configuration

 123

also change the value of the wDCInSyncWindow variable, configuring the maximum jitter allowed on

the synchronization between master and slaves.

Use LRW instead of LWR/LRD: Activating this option enables the Slave-to-Slave communication
because, instead of using separated reading (LRD) and write (LWR) commands, combined

reading/writing (LRW) commands will be used.

Auto Restart Slaves: By enabling this option, the Master will restart the Slaves as soon as the
communication is aborted, so, the bError EtherCAT Master diagnostic in the Diagnostic GVL won’t

go to TRUE.

Image In Address and Image Out Address: These definitions can only be edited if the Autoconfig

mode is disabled, otherwise this will be done automatically and this parameter will be invisible.

Diagnostics Message: it shows some information or error messages from the stack. The messages

are also logged in the PLC Log Tab, access through the Device icon in the Device Tree. This option

is only visible when the EtherCAT Master is online.

Bus Load: This value shows the busload on the network adapter (0 – 100%). This option is only

visible when the EtherCAT Master is online.

I/O Mapping

This EtherCAT Master configuration editor tab offers the possibility to assign the project variables to
its corresponding EtherCAT inputs and outputs. Thus, the EherCAT Master variables can be

controlled by User Application.

Furthermore, it’s possible to choose which task the Bus Cycle Task will use, through the options in
the selection list. This task serves to do the EtherCAT Master operations. MainTask is the default

option of this field.

Figure 4-48. I/O Mapping Dialog

Status and Information Tabs

The Status tab of the EtherCAT Master configuration editor provides status information (e.g.

‘Running’, ‘Stopped’) and diagnostic messages specific of the device and the internal bus system.

4. Configuration

 124

The Information tab, present on the EtherCAT Master configuration editor, shows, if available, the

following general information about the module: Name, Vendor, Type, Version Number, Category,

Order Number, Description, Image.

EtherCAT Slave Configuration

Below are listed the main EtherCAT Slave configuration options, as defined in the Device

Description File.

Slave Parameters

Below are presented the general parameters found in EtherCAT Slave configuration initial screen.

This field is only available if the Autoconfig mode (Master) isn’t enabled.

Figure 4-49. EtherCAT Slave Configuration Dialog

Device Configuration Description Default Value Possibilities

AutoInc Address
Autoincremental Address

(16-bit) defined by the
Slave position in the

- -65535 to 0

4. Configuration

 125

Device Configuration Description Default Value Possibilities

network.

EtherCAT Address

Slave final address,

assign by the Master
during startup. This

address is independent
from the position in the
network.

- 1 to 65535

Enable Expert Settings
Enable the Slave
advanced Settings

options.

Unmarked
Marked

Unmarked

Optional
Declare the Slave as
Optional.

Unmarked
Marked

Unmarked

Select DC
Show all Distributed Clock

configurations provided by
the device description file

Enable Distributed Clock
Enable the Distributed
Clock configuration

options.

Unmarked
Marked

Unmarked

Sync Unit Cycle [µs]
Show the Cycle Time set
in Master

100000 2000 to 1000000

Enable Sync 0
Enable the Sync 0

synchronization unit
configurations.

Unmarked
Marked

Unmarked

Sync Unit Cycle (Sync 0)

By selecting this option,
the Cycle Time will be

determined by the product
of the factor and the Sync
Unit Cycle.

Unmarked
Marked

Unmarked

User Defined

(Sync 0)

If this option is selected,

the desired time, in
microseconds, can be
directly set into the Cycle

Time (µs) field.

Unmarked
Marked

Unmarked

Cycle Time [µs] (Sync 0)
Show the cycle time

currently set.
100000 1 to 2147483647

Shift Time [µs]

(Sync 0)

Time between the sync

events and the “Output
Valid” or “Input Latch”
time.

0
-2147483648 to

2147483647

Enable Sync 1
Enable the Sync 1

synchronization unit
configurations.

Unmarked
Marked

Unmarked

Sync Unit Cycle (Sync 1)

By selecting this option,
the Cycle Time will be

determined by the product
of the factor and the Sync
Unit Cycle.

Unmarked
Marked

Unmarked

User Defined

(Sync 1)

If this option is selected,
the desired time, in

microseconds, can be
directly set into the Cycle
Time (µs) field.

Unmarked
Marked

Unmarked

Cycle Time [µs] (Sync 1)
Show the cycle time

currently set.
100000 1 to 2147483647

Shift Time [µs]

(Sync 1)

Time between the sync
events and the “Output

Valid” or “Input Latch”
time.

0
-2147483648 to

2147483647

Check Vendor ID
If unmarked, it will disable

the Vendor ID Check
Marked

Marked

Unmarked

Check Product ID
If unmarked, it will disable
the Product ID Check

Marked
Marked

Unmarked

4. Configuration

 126

Device Configuration Description Default Value Possibilities

SDO Access

Set a time reference (in

microseconds) for the
timeout check of a SDO

Access.

- 0 to 100000

I -> P

(Timeouts)

Set a time reference (in

microseconds) for the
timeout check of the

switch from Init to Pre-
Operation mode.

- 0 to 100000

P -> S/S -> O

Set a time reference (in
microseconds) for the

timeout check of the
switch from Pre-Operation
and to Safe-Operation and

from Safe-Operation to
Operational modes.

- 0 to 100000

Cycle Units
Set the Unit Cycle to the

local microprocessor.
Unmarked

Marked

Unmarked

Latch Unit 0
Set the Latch Unit 0 to the
local microprocessor.

Unmarked
Marked

Unmarked

Latch Unit 1
Set the Latch Unit 1 to the

local microprocessor.
Unmarked

Marked

Unmarked

Table 4-74. EhterCAT Slave Configurations

Notes:

AutoInc Address: This address is used only during startup, when the Master is assigning the

EtherCAT addresses to the Slaves. When, for this matter, the first telegram runs through the Slaves,
each run-through Slave increases its AutoInc by 1. The Slave with address 0 finally will receive the

data.

Optional: If a Slave is declared as Optional, no error message will be created in case the device

doesn’t exist in the bus system. Thus a "Station alias" address must be defined and written to the
EEprom. This option is only available if the option "Autoconfig Master/Slaves" in the settings of the

EtherCAT Master is activated and if this function is supported by the EtherCAT Slave.

Enable Distributed Clock: If the "Distributed Clock" functionality is enabled, the data exchange
cycle time, displayed in the Sync Unit Cycle (µs) field will be determined by the Master Cycle Time.

Thus the master clock can synchronize the data exchange within the network.

Enable Sync 0: If this option is activated, the Sync0 synchronization unit is used. A synchronization
unit describes a set of process data which is exchanged synchronously.

Sync Unit Cycle (Sync 0): If this option is activated, the Master Cycle Time, multiplied by the

chosen factor will be used as synchronization cycle time for the slave. The “Cycle Time (µs)” field

shows the currently set cycle time.

Shift Time (µs): The Shift Time describes the time between the sync events (Sync0, Sync1) and the

Output Valid or Input Latch times. Writable value, if the slave supports shifting of Output Valid or

Input Latch.

Enable Sync 1: If this option is selected, the synchronization unit Sync1 is used. A synchronization

unit is a set of process data which is exchange synchronously.

Sync Unit Cycle (Sync1): If this option is activated, the Master Cycle Time, multiplied by the

chosen factor will be used as synchronization cycle time for the slave. The “Cycle Time (µs)” field
shows the currently set cycle time.

Current State: The current state is displayed. Possible values: Init, Pre-Operational, Safe

Operational and Operational. If the state is Operational, the slave configuration has been terminated
correctly.

4. Configuration

 127

Check VendorID and ProductID: By default, at startup of the system the Vendor ID and/or the

Product ID will be checked against the current configured settings. If a mismatch is detected, the bus

will be stopped and no further actions will be executed. This serves to avoid the download of an
erroneous configuration. This option is intended to switch off the check, if necessary.

SDO Access: By default there’s no timeout set for the SDO list submit action at system startup.

However, if it’s necessary to check if this action exceeds a certain time, it must be defined (in
microseconds) in this field.

I->P: By default there’s no timeout set for the state transition between Init to Pre-Operational.

However, if it’s necessary to check if this action exceeds a certain time, it must be defined (in

microseconds) in this field.

P -> S / S-> O: By default there’s no timeout set for the state transition between Pre-Operational to

Safe-Operational and between Safe-Operational to Operational. However, if it’s necessary to check

if this action exceeds a certain time, it must be defined (in microseconds) in this field.

DC cycle unit control: Choose the desired option(s) concerning the Distributed Clock functions in

order to define, which should be assigned to the local microprocessor. The control is done in register

0x980 in the EtherCAT slave: The possible settings: Cyclic Unit, Latch Unit 0, Latch Unit 1.

Station Alias: These settings are only visible if the option Optional is activated or if the slave device
supports alias addresses (defined in the Device Description File).

Enable: If the setting Optional is not activated, this setting can be activated if explicitly supported by

the device description of the slave. It allows direct assignment of an alias address in order to get the
slaves address independent of its position within the bus. If the option Optional is activated, this

checkbox is disabled.

Write to EEPROM: This command is only visible in online mode. It allows to write the defined
address to the EEPROM of the slave. If not supported by the slave this command will have no effect

and the device will not work as Optional Slave.

Actual Address: This field, only visible in online mode, displays the actual address of the slave. It

can be used to check the success of the Write to EEPROM command.

FMMU/Sync

This dialog will only be provided on a tab of an EtherCAT Slave configuration editor if the

Autoconfig Mode in the Master is disabled. It shows the FMMUs and Sync Managers of the slave as
defined by the device description file. These settings may be reworked, for example for configuring a

slave-to-slave communication.

ATTENTION:

These are Expert Settings, which usually are not necessary for standard applications.

4. Configuration

 128

Figure 4-50. FMMU/Sync Dialog

FMMU
This table shows the Fieldbus Memory Management Units (FMMUs) of the slave which are used for

handling the process data. Each mapping of the logical address GlobStartAddr on a physical address

Ph. StartBit is defined. Bitwise mapping is possible. New units can be added and existing ones can be
edited by the Edit FMMU dialog, to be opened via the Add… and Edit… buttons.

Sync Manager
This table shows the Synchronization Manager(s) of the slave. For each available Sync Manager
Type (Mailbox In, Mailbox Out, Inputs, Outputs) a physical Start Address, the Access type, the

Buffer and the physical address, where the Interrupts have to be sent to, are defined. New Sync

Managers can be added resp. the existing ones can be edited in the dialog Edit SyncMan, which is to
be opened by buttons Add… and Edit…

Process Data and Expert Process Data

The Process Data tab of the EtherCAT Slave configurator editor shows the slave input and output

process data, each defined by name, type and index by the device description file, as seen in Figure
4-51.

The selected input (to be read) and output (to be written) of the device are available in the I/O

Mapping dialog as PLC inputs and outputs to which project variables might be mapped.

In order to modify the current selection, first you must click on the checkbox before the currently

selected data in order to cancel the selection. After that you can set another one.

4. Configuration

 129

Figure 4-51. Process Data Dialog

The Expert Process Data dialog will only be available in the EtherCAT Slave configuration editor if
the Enable Expert Settings option is activated. It provides another, more detailed, vision of the

process data, adding to what is presented in the Process Data tab. Furthermore, the download of the

PDO Assignment and the PDO Configuration can be activated in this dialog.

ATTENTION:
If the Slave doesn’t accept the PDO Configuration, it will stay in Pre-Operational state and none real

time data exchange will be possible

4. Configuration

 130

Figure 4-52. Expert Process Data Dialog

This dialog id divided in four sections and two options:

 Sync Manager: List of Sync Manager with data size and type of PDOs

 PDO Assignment: List of PDOs assigned to the selected Sync Manager. The checkbox activates

the PDO and IO channels are created. It is similar to the simple PDO configuration windows.

Here only PDOs can be enabled or disabled.

 PDO List: List of all PDOs defined in the device description file. Single PDOs can be deleted,

edited or added by executing of the respective command from the context menu.

 PDO Content: Displays the content of the PDO selected in the section above. Entries can be

deleted, edited or added by executing of the respective command from the context menu.

 PDO Assignment: If activated a CoE write command will be added to index 0x1CXX to write the

PDO configuration 0x16xx or 0x1a00.

 PDO Configuration: If activated several CoE write commands will be added to write the PDO

mapping to the slave.

ATTENTION: If a Slave doesn’t support the PDO configuration, a download may result in a Slave
error. This function should only be used by experts.

4. Configuration

 131

Editing the PDO List

Figure 4-53. Edit PDO List Dialog

This dialog is opened through the context menu from the PDO List area, presented in Figure 4-52.

Below are some explanations on the configuration options presented in this dialog.

 Name: Name of the PDO entry.

 Index: Index of the PDO in being edited.

 TxPDO (Input): If activated, the PDO will be transferred from the Master to the Slave.

 RxPDO (Output): If activated, the PDO will be transferred from the Master to the Slave.

 Mandatory: The PDO is necessary and can’t be unchecked in the PDO Assignment area.

 Fixed Content: The PDO content is fixed and can’t be changed. It’s not possible to add entries in

the PDO Content panel.

 Virtual PDO: Reserved for future use.

 Exclude PDOs: It’s possible to define a list of PDO that can, or can’t, be selected along with the

PDO being edited in the PDO Assignment area, or in the Process Data tab. If a PDO is marked in

this list, it can’t be selected, turning into gray in the PDO Assignment area when the PDO in
edition is selected.

 SyncUnit: ID of the Sync Manager the PDO shall assigned to.

Definition of the PDO Content
This dialog is accessed through the context menu in the PDO Content area, and its content, beyond
the possibility to access this windows, varies according to the EtherCAT Slave in use.

4. Configuration

 132

Figure 4-54. ‘Select item from object directory’ dialog

Startup Parameters

In the Startup Parameters tab, parameters for the device can be defined, which will be transferred by

SDOs (Service Data Objects) or IDN at the system’s startup. The options available in this tab, as well
as the access possibilities, vary according to the EtherCAT Slave used and they are present in the

Device Description File.

Online

The Online dialog is only available in the EtherCAT Slave configuration editor, if the option Enable

Expert Config of the Slave is active and the Application is connected to the device. It provides a view

with status information of the Slave and functions to transfer files to the Slavers over EtherCAT
(FoE).

4. Configuration

 133

Figure 4-55. Online Dialog

This tab is divided in the following functionality group.

 State Machine: The buttons Init, Pre-Op (Pre-Operational), Op (Operational) and Safe-Op

(Safe-Operational) can be used for debugging purposes. They make the slave transition to the

respective state.

 File access over EtherCAT: If you want to transfer firmware files to or from the Slave, you

have to click on the Bootstrap button to switch the slave in 'Bootstrap Mode'. The Download and

Upload of firmware files can be done with the corresponding buttons. A dialog to save or open

the firmware file will open. In this dialog, a string and password are required to execute the file
transfer. This information is provided by the slave device and documented in the datasheet of the

slave.

 E2PROM access: The slave configuration can be read from, or written to, the E
2
PROM. Here,

as well as for the firmware transfer, a dialog to open or save files will open. The command ‘Write
E

2
PROM XML’ can be used to write the Slave configuration directly from the XML file to the

device. This command is only enabled if there’s configuration data in the XML file (section

<ConfigData>).

I/O Mapping

This tab of the EtherCAT Slave configuration editor offers the possibility to assign the project

variables to the EtherCAT inputs or outputs. This way, the EtherCAT Slave variables can be

controlled by the User Application.

4. Configuration

 134

Figure 4-56. I/O Mapping Dialog

Status and Information tabs

The Status tab of the EtherCAT Slave provides status information (e.g. ‘Running’, ‘Stopped’) and
device-specific diagnostic messages, also on the used card and the internal bus system.

The Information dialog, presented in the EtherCAT Slave configuration editor, show, if available, the

following general information about the module: Name, Vendor, Type, Version Number, Categories,

Order Number, Description, Image.

EtherNet/IP

The EtherNet/IP is a master-slave architecture protocol, whitch consist of an EtherNet/IP Scanner

(the master) and one or more EtherNet/IP Adapter (the slave). The EtherNet/IP editor provides
dialogs for setting parameters and for mapping inputs/outputs to variables.

The Ethernet/IP protocol is based on CIP (Common Industrial Protocol), which have two primary

purposes: The transport of control-oriented data associated with I/O devices and the transport of other

informations related to the system being controlled, such configuration parameters and diagnostics.
The first one is done through implicit messages, while the second one is done through explicit

messages.

This protocol is available to the following Nexto Series CPUs: NX3005, NX3010, NX3020 and
NX3030. Their runtime system can act as either Scanner or Adapter. Each CPU’s NET interface

support only one EtherNet/IP instance and it can’t be instanced on a Ethernet expansion module.

Each device standing one or two EtherNet/IP Scanners support up to 32 Adapters under it/them.
Being 32 the adapters number’s maximum limit. If there are two Scanners, both of them summed

can’t have more then this limit. And each one of those Adapters can’t have more than 50

Inputs/Outputs.

4. Configuration

 135

An EtherNet/IP Adapter supports up to 64 modules of input or output. These modules can by of type

BYTE, WORD, DWORD or REAL. And the MainTask’s interval of a device running an Adapter

must be lesser or equal the RPI.

ATTENTION

EtherNet/IP can’t be used together with ethernet NIC-Teaming nor with Half-Cluster's redundancy.

ATTENTION

EtherNet/IP requires a cyclic MainTask, which means it can’t be used with any configuration that

sets the MainTask as freewheeling. As example, a Basic Profile project doesn’t support EtherNet/IP.

ATTENTION

To avoid communication issues, EtherNet/IP Scanner can only have Adapters configured within the

same subnetwork

EtherNet/IP Interface

To add an EtherNet/IP Scanner or Adapter it’s needed to add an EtherNet/IP Interface under the NET
interface. This can be done through the command “Add Device”. Under this EtherNet/IP Interface it's

possible to add a Scanner or an Adapter

EtherNet/IP Scanner Configuration

The Scanner requires at least one Adapter with which it will exchange data. New Adapters can be

installed on MasterTool with the EDS and DCF Files. The configuration options may difer depending

on the device description file of the added Adapter.

General

Open the Adapter declared under the Scanner it’s possible to configure it as needed. The first Tab is

General, on it is possible to configure the IP address and the Electronic Keying parameters. These

parameters must be checked or unchecked if the adapter being used is installed on MasterTool.
Otherwise, if the adapter used is type Generic, then the fields “Device Type”, “Vendor Code”,

“Product Code”, “Major Revision” and “Minor Revision” must be fulfilled with the correct

information and the boxes checked as long as needed. The verification can be switched from
“Compatibility Check” to “Strict Identity Check”.

Connections

The upper area of the Connections tab displays a list of all configured connections. When there is an

"Exclusive Owner" connection in the EDS file, it is inserted automatically when the Adapter is
added. The configuration data for these connections can be changed in the lower part of the view.

Notes:

For two or more EtherNet/IP Scanners to connect to the same Remote Adapter:

1 - Only one of the Scanners can establish an "Exclusive Owner" connection.

2 - The same value of RPI (ms) must be configured for the Scanners.

The configuration data is defined in the EDS file. The data is transmitted to the remote adapter when
the connection is opened.

4. Configuration

 136

Configuration Description Default Value Options

RPI (ms)

Requested Packet

Interval: exchange interval
of the input and output

data.

10 ms
Multiple of
MainTask

interval

O -> T Size (Bytes)

Size of the producer data

from the Scanner to the
Adapter (Originator -->

Target).

Depends on
adapter’s EDS

0 - 400

T -> O Size (Bytes)

Size of the consumer data

from the Adapter to the
Scanner (T --> O).

Depends on
adapter’s EDS

0 - 400

Config #1 Size (Bytes)
Size of configuration data

1.

Depends on

adapter’s EDS
-

Config #2 Size (Bytes)
Size of configuration data

2.

Depends on

adapter’s EDS
-

Connection Path

Address of the -
configuration objects -

input objects - output
objects.

Depends on

adapter’s EDS
-

Table 4-75. EtherNet/IP Connection parameters

To add new connections there is the button “Add Connection…” which will open the “New

connection” window. On this window it’s possible to configure a new type of connection from the
ones predefined on Adapter’s EDS or a generic conection from zero.

Assemblies

The upper area of the Assemblies tab displays a list of all configured connections. When a

connection is selected, the associated assemblies in the lower area of the tab are displayed.

Output Assembly and Input Assembly:

Configuration Description

Add Opens the dialog box “Add Input/Output”.

Delete Deletes all selected Inputs/Outputs.

Move Up Moves the selected Input/Output within the list.

The order in the list determines the order in the
I/O mapping. Move Down

Name These values can be changed by double-clicking

into the text field. Help String

Bit Length This value must not be edited.

Table 4-76. EtherNet/IP Assemblies tab

Dialog box “Add Input/Output”:

Configuration Description

Name Name of the input/output to be inserted,

Datatype
Type of the input/output to be inserted. This type

also define its bitlength

Table 4-77. EtherNet/IP “Add Input/Output” window

EtherNet/IP I/O Mapping

I/O Mapping tab shows the name of the automatically generated instance of the Adapter below IEC

Objects in the Variable column. In this way, the instance can be accessed by the application. Here the

project variables are mapped to adapter’s inputs and outputs.

The “Always update variables” option must be keeped as default in “Enable 1”.

4. Configuration

 137

EtherNet/IP Adapter Configuration

The EtherNet/IP Adapter requires Ethernet/IP Modules. The Modules will provide I/O mappings that

can be manipulated by user application through %I or %Q addresses according to its configuration
(INPUT BYTE, OUTPUT BYTE, etc)

Module Types

There are 8 diferent modules which can be added under the adapter. Four outputs and four inputs.
They are of type BYTE, WORD, DWORD and REAL. These types can be chosen in the general tab

of the module

EtherNet/IP Module I/O Mapping

It shows the name of the automatically generated instance of the module below IEC Objects in the
Variable column. In this way, the instance can be accessed by the application

The “Always update variables” option must be keeped as default in Enable 1.

Communication Performance

Communication Rate of a MODBUS Server Device

The MODBUS devices configurable in the Nexto CPU run in the background, with a priority below

the user application and cyclically. Thus, their performance varies depending on the remaining time,

taking into account the difference between the interval and time that the application takes to run. For

example, a MODBUS device in an application that runs every 100 ms, with a running time of 50 ms,
will have a lower performance than an application running every 50 ms to 200 ms of interval. It

happens because in the latter case, the CPU will have a longer time between each MainTask cycle to

perform the tasks with lower priority.

It also has to be taken into account the number of cycles that the device, slave or server takes to

respond to a request. To process and transmit a response, a MODBUS RTU Slave will takes cycles

(cycle time of the MODBUS task), whereas a MODBUS Ethernet Server task takes only one cycle.

But this is the minimum time between receipt of a request and the reply. If the request is sent
immediately after the execution of a task MODBUS cycle time may be equal to 2 or 3 times the cycle

time for the MODBUS slave and from 1 to 2 times the cycle time for the MODBUS server.

In this case: Maximum Response Time = 3 * (cycle time) + (time of execution of the tasks) + time
interframe chars) + (send delay).

For example, for a MODBUS Ethernet Server task with a cycle of 50 ms, an application that runs for

60 ms every 100 ms, the server is able to run only one cycle between each cycle of the application.
On the other hand, using the same application, running for 60 ms, but with an interval of 500 ms, the

MODBUS performs better, because while the application is not running, it will be running every 50

ms and only each cycle of MainTask it will take longer to run. For these cases, the worst performance

will be the sum of the Execution Time of the user application with the cycle time of the MODBUS
task.

For the master and client devices the operating principle is exactly the same, but taking into account

the polling time of the MODBUS relation and not the cycle time of the MODBUS task. For these
cases, the worst performance of a relationship will be performed after the polling time, along with the

user application Execution Time.

It is important to stress that the running MODBUS devices number also changes its performance. In a
user application with Execution Time of 60 ms and interval of 100 ms, there are 40 ms left for the

CPU to perform all tasks of lower priority. Therefore, a CPU with only one MODBUS Ethernet

Server will have a higher performance than a CPU that uses four of these devices.

4. Configuration

 138

CPU’s Local Interfaces

For a device MODBUS Ethernet Server, we can assert that the device is capable to answer an x

number of requisitions per second. Or, in other words, the Server is able to transfer n bytes per
second, depending on the size of each requisition. As smaller is the cycle time of the MODBUS

Server task, higher is the impact of the number of connections in his answer rate. However, for cycle

times smaller than 20 ms this impact is not linear and the Table 4-78 must be viewed for information.

The Table 4-78 exemplifies the number of requisitions that a MODBUS Server inserted in a local

Ethernet interface is capable to answer, according to the cycle time configured for the MODBUS task

and the number of active connections:

Number of Active Connections Answered requisitions per second
with the MODBUS task cycle at 5 ms

Answered requisitions per second
with the MODBUS task cycle at 20

ms

1 Connection 160 47

2 Connections 300 95

3 Connections 395 142

4 Connections 470 190

5 Connections 515 237

6 Connections 570 285

7 Connections 605 332

8 Connections 640 380

9 Connections 665 427

10 Connections 690 475

Table 4-78. Communication Rate of an MODBUS Server at Local Interface

ATTENTION:
The communication performances mentioned in this chapter are just examples, using a CPU with

only one device MODBUS TCP Server, with no logic to be executed inside the application that

could delay the communication. Therefore, these performances must be taken as the maximum rates.

For cycle times equal or greater than 20 ms, the increase of the answer rate is linear, and may be
calculated using an equation:

N =- C x (Z – (Z / (T x 1000)))

Z = 1 / T

Where N is the medium number of answers per second, C is the number of active connections and T

is equal to the cycle time of the MODBUS task (in seconds).

As an example a MODBUS Server, with only one active connection and a cycle time of 50 ms we

get:

C = 1; T = 0.05 s; Z = 1 / 0.05 = 20;

N = 1 x (20 – (20 / (0.05 x 1000))) = 1 x (20 – (20 / 50)) = 1 x (20 – 0.4) = 1 x 19.6

N = 19.6

That is, in this configuration the MODBUS Server answers, on average, 19 requisitions per second.

In case the obtained value is multiplied by the number of bytes in each requisition, we will obtain a

transfer rate of n bytes per second.

Remote Interfaces

The performance of a device MODBUS Server in one remote Ethernet interface is similar to the

performance in the CPU’s local interfaces.

4. Configuration

 139

However, due to time of the communication between the CPU and the modules, the maximum

performance is limited. For only one active connection, the number of answers is limited in the

maximum of 18 answers per second. With more active connections, the number of answers will
increase linearly, exactly like the local interfaces, however being limited at the maximum of 90

answers per second. So, for a remote Ethernet interface, we will have the following forms to

calculate his performance:

For T ≤ 55 ms is used:

N = C x (18,18 – (18,18 / (0,055 x 1000)))

And for T ≥ 55 ms is used:

N = C x (Z – (Z / (T x 1000)))

Where N is the medium number of answers per second, C is the number of active connections and T

is equal to the cycle time of the MODBUS task (in seconds).

The user must pay attention to the fact that the maximum performance of a device MODBUS Server
in one remote Ethernet interface is 90 answers of requisitions per second.

Communication Rate of a Device with OPC Server

Communication performance with OPC Server was tested by creating POUs with 1,000 INT

variables each. All scenarios were tested with Single profile and MainTask Interval at 100 ms. The
communication was enabled by the attribute {attribute 'symbol' := 'readwrite'}, to make the data

available to the OPC Server. The measurements were made while MasterTool was disconnected from

the CPU, and MainTask duration was made to last 5%, 50% and 80% of the configured Interval, as
seen in Table 4-79

At the OPC Client’s side, a SCADA system driver was used. Configured update time was 50 ms.

Performance results in these conditions are described in Table 4-79.

Total quantity of
variables in the

PLC’s project

Variable update time at OPC Client

5% of CPU Busy 50% of CPU Busy 80% of CPU Busy

1,000 600 ms 800 ms 1400 ms

2,000 800 ms 900 ms 2800 ms

5,.000 1000 ms 2000 ms 6500 ms

10,000 2000 ms 4000 ms 13700 ms

15,.000 3200 ms 6400 ms 20000 ms

20,000 4000 ms 8100 ms 25000 ms

Table 4-79. Communication Rate of an OPC Server

MODBUS Client Relation Start in Acyclic Form

To start a MODBUS Client relation in acyclic form, it is suggested the following method which can

be implemented in a simple way in the user applicative program:

 Define the maximum polling time for the relations

 Keep the relation normally disabled

 Enable the relation at the moment the execution is desired

 Wait for the confirmation of the relation execution finishing and, at this moment, disable it again

System Performance

In cases where the application has only one MainTask user task responsible for the execution of a
single Program type programming unit called MainPrg (as in Simple Profile), the PLC consumes a

certain amount of time for the task to be processed. At that time we call it as Execution Time.

4. Configuration

 140

In an application the average application Execution Time using can be known using the MasterTool

IEC XE in the Device item of its Devices Tree as follows:

PLC Logic-> Application-> Task Configuration in the Monitor tab, Average Cycle Time column.

The user must pay attention to the Cycle Time so that it does not exceed 80% of the interval set in the

MainTask user task. For example, in an application where the interval is 100 ms, an appropriate

Cycle Time is up to 80 ms. This is due to the fact that the CPU needs time to perform other tasks
such as communication processing, processing of the display and memory card, and these tasks take

place within the range (the remaining 20% of Cycle Time).

ATTENTION:

For very high cycle times (typically higher than 300 ms), even that the value of 80% is respected, it
may occur a reduction in the display response time and of the diagnostics key. In case the 80

percentage is not respected and the running time of the user task is closer or exceeds the interval set

for the MainTask, the screen and the diagnosis button cannot respond once its priority in the system

running is lower than the user tasks. In case an application with errors is loaded in the CPU, it may
be necessary to restart it without loading this application as shown in the System Log section.

ATTENTION:

The CPU’s system logs of the Nexto Series (NX3010, NX3020 and NX3030), starting from
firmware version 1.4.0.33 now reloaded in case of a CPU reset or a reboot of the Runtime System,

that is, you can view the older logs when one of these conditions occurs.

I/O Scan Time

For a project that uses digital I/O modules, being them inserted into the bus and declared in the
project, the MainTask time will increase according to the number of modules. The Table 4-80

illustrates the average time that is added to the MainTask:

Declared Modules in the Bus Added Time in the Main Task Cycle Time (µs)

5 300

10 700

20 1000

Table 4-80. I/O Scanning Time

In projects that use remote I/Os, for example, using the NX5001 PROFIBUS-DP Master module, the

manual of the respective module has to be consulted for information about performance and

influences of the module in the execution of user tasks.

Memory Card

Data transfers involving the memory card is performed by the CPU in the background, as this gives

priority to the execution of user application and communication processing. Thus, the transfer of files
to the card may suffer an additional significant time, depending on the Cycle Time of the user

application. The time required to read/write files on the card will be directly affected by the Cycle

Time of the user application since this application has priority in execution.

Further information about the use of the memory card see Configuration - Memory Card chapter.

4. Configuration

 141

RTC Clock

Nexto Series CPUs have an internal clock that can be used through the NextoStandard.lib library.

This library is automatically loaded during the creation of a new project (to perform the library

insertion procedure, see Libraries chapter). Figure 4-57 shows how to include the blocks in the
project:

Figure 4-57. Clock Reading and Writing Blocks

ATTENTION:

Function blocks of RTC Reading and Writing, previously available in 2.00 MasterTool IEC XE or

older become obsolete from 2.00 or newer, the following blocks are no longer used:
NextoGetDateAndTime, NextoGetDateAndTimeMs e NextoGetTimeZone, NextoSetDateAndTime,

NextoSetDateAndTimeMs e NextoSetTimeZone.

Function Blocks for RTC Reading and Writing

Among other function blocks, there are some very important used for clock reading

(GetDateAndTime, GetDayOfWeek and GetTimeZone) and for date and time new data configuring

(GetDateAndTime, and SetTimeZone). The proceedings to configure these two blocks are described

below:

ATTENTION:

The function blocks for RTC (RTC (NextoGetDateAndTime, NextoGetDateAndTimeMs,

NextoSetDateAndTime e NextoSetDateAndTimeMs) reading and writing cannot be used in the area

of redundant data in redundant projects. The function blocks can be used only in non-redundant
POUs, as the POU NonSkippedPrg. For more details on the functioning of POU NonSkippedPrg see

NonSkippedPrg.

4. Configuration

 142

Function Blocks for RTC Reading

The clock reading can be made through the following functions:

GetDateAndTime:

Figure 4-58. Date and Hour Reading

Input and Output

Parameters
Type Description

DATEANDTIME
EXTENDED_DATE_A

ND_TIME

This variable returns the value of date and

hour of RTC in the format shown at Table 4-90

Table 4-81. Input and Output Parameters of GetDateAndTime

Input Parameters Type Description

GETDATEANDTIME RTC_STATUS
Returns the function error state, see Table

4-92

Table 4-82. Output Parameters of GetDateAndTime

Utilization example in ST language:

PROGRAM MainPrg

VAR

Result : RTC_STATUS;

DATEANDTIME : EXTENDED_DATE_AND_TIME;

xEnable : BOOL;

END_VAR

--

IF xEnable = TRUE THEN

Result := GetDateAndTime(DATEANDTIME);

xEnable := FALSE;

END_IF

GetTimeZone

The following function reads the Time Zone configuration, this function is directly related with time
in Time Zone at SNTP synchronism service.

Figure 4-59. Configuration Reading of Time Zone

Input and Output

Parameters
Type Description

TimeZone TIMEZONESETTINGS
This variable present the reading of Time Zone

configuration.

Table 4-83. Input and Output Parameters of GetTimeZone

4. Configuration

 143

Output Parameters Type Description

GetTimeZone RTC_STATUS Returns the function error state, see Table 4-92.

Table 4-84. Output Parameters of GetTimeZone

Utilization example in ST language:

PROGRAM MainPrg

VAR

GetTimeZone_Status : RTC_STATUS;

TimeZone : TIMEZONESETTINGS;

xEnable : BOOL;

END_VAR

--

IF xEnable = TRUE THEN

GetTimeZone_Status := GetTimeZone(TimeZone);

xEnable := FALSE;

END_IF

GetDayOfWeek

GetDayOfWeek function is used to read the day of the week.

Figure 4-60. Day of Week Reading

Output Parameters Type Description

GetDayOfWeek DAYS_OF_WEEK
Returns the day of the week, See Section
EXTENDED_DATE_AND_TIME

Table 4-85. Output Parameters of GetDayOfWeek

When called, the function will read the day of the week and fill the structure DAYS_OF_WEEK.

Utilization example in ST language:

PROGRAM MainPrg

VAR

 DayOfWeek : DAYS_OF_WEEK;

END_VAR

--

DayOfWeek := GetDayOfWeek();

Function Blocks and Functions of RTC Writing and Configuration

The clock settings are made through function and function blocks as follows:

SetDateAndTime

SetDateAndTime function is used to write the settings on the clock.

4. Configuration

 144

Figure 4-61. SetDateAndTime

Input parameters Type Description

REQUEST BOOL
This variable, when receives a rising edge,
enables the clock writing.

DATEANDTIME
EXTENDED_DATE_A

ND_TIME

Receives the values of date and hour with
milliseconds. See section

EXTENDED_DATE_AND_TIME

Table 4-86. Input Parameters of SetDateAndTime

Output parameters Type Description

DONE BOOL
This variable, when true, indicates that the

action was successfully completed.

EXEC BOOL
This variable, when true, indicates that the

function is processing the values.

ERROR BOOL
This variable, when true, indicates an error
during the Reading/Writing.

STATUS RTC_STATUS
Returns the error occurred during the

reading/configuration. See section RTC Data
Structures - RTC_STATUS.

Table 4-87. Output Parameters of SetDateAndTime

When a rising edge occurs at the REQUEST input, the function block will write the new

DateAndTime values on the clock. If the writing is successfully done, the DONE output will be equal

to TRUE. Otherwise, the ERROR output will be equal to TRUE and the error will appear in the
STATUS variable.

Utilization example in ST language:

4. Configuration

 145

PROGRAM MainPrg

VAR

 SetDateAndTime : SetDateAndTime;

 xRequest : BOOL;

 DateAndTime : EXTENDED_DATE_AND_TIME;

 xDone : BOOL;

 xExec : BOOL;

 xError : BOOL;

 Status : RTC_STATUS;

 xWrite : BOOL;

END_VAR

--

IF (xWrite = TRUE) THEN

 SetDateAndTime(

 request := xRequest,

 done => xDone,

 exec => xExec,

 error => xError,

 status => status,

 DateAndTime := DateAndTime);

 xWrite := FALSE;

END_IF

ATTENTION:
If you try to write time values outside the range of the RTC, the values are converted to valid values,

provided they do not exceed the valid range of 01/01/2000 to 12/31/2035. For example, if the user

attempts to write the value 2000 ms, it will be converted to 2 seconds, write the value 100 seconds, it

will be converted to 1 min and 40 seconds. If the type value of 30 pm, it is converted to 1 day and 6
hours, and so on.

SetTimeZone

The following function block makes the writing of the time zone settings:

Figure 4-62. Writing of the Time zone Settings

Input parameters Type Description

TIMEZONE TIMEZONESETTINGS
Structure with time zone to be configured. See

section RTC Data Structures -
TIMEZONESETTINGS.

Table 4-88. SetTimeZone Input Parameters

Output parameters Type Description

SetTimeZone RTC_STATUS
Returns the error occurred during the
reading/setting. See section RTC Data

Structures - RTC_STATUS.

Table 4-89. SetTimeZone Output Parameters

When called, the function will configure the TIMEZONE with the new system time zone
configuration. The configuration results is returned by the function.

Utilization example in ST language:

4. Configuration

 146

PROGRAM MainPrg

VAR

Status : RTC_STATUS;

TimeZone : TIMEZONESETTINGS;

xWrite : BOOL;

END_VAR

//FB SetTimeZone

IF (xWrite = TRUE) THEN

Status := SetTimeZone(TimeZone);

xWrite := FALSE;

END_IF

ATTENTION:
To perform the clock should be used time and date values within the following valid range: 00:00:00

hours of 01/01/2000 to 12/31/2035 23:59:59 hours, otherwise , is reported an error through the

STATUS output parameter. For details of the STATUS output parameter, see the section

RTC_STATUS.

RTC Data Structures

The reading and setting function blocks of the Nexto series CPUs RTC use the following data

structures in its configuration:

EXTENDED_DATE_AND_TIME

This structure is used to store the RTC date when used the function blocks for date reading/setting

within milliseconds of accuracy. It is described in the Table 4-90:

Structure Type Variable Description

EXTENDED_DATE_

AND_TIME

BYTE byDayOfMonth Stores the day of the set date.

BYTE ByMonth Stores the month of the set date.

WORD wYear Stores the year of the set date.

BYTE byHours Stores the hour of the set date.

BYTE byMinutes Stores the minutes of the set date.

BYTE bySeconds Stores the seconds of the set date.

WORD wMiliseconds Stores the milliseconds of the set date.

Table 4-90. EXTENDED_DATE_AND_TIME

DAYS_OF_WEEK

This structure is used to store the day of week:

Enumerable Value Description

DAYS_OF_WEEK

0 INVALID_DAY

1 SUNDAY

2 MONDAY

3 TUESDAY

4 WEDNESDAY

5 THURSDAY

6 FRIDAY

7 SATURDAY

Table 4-91. DAYS_OF_WEEK Structure

4. Configuration

 147

RTC_STATUS

This enumerator is used to return the type of error in the RTC setting or reading and it is described in

the Table 4-92:

Enumerator Value Description

RTC_STATUS

NO_ERROR (0) There is no error.

UNKNOWN_COMMAND (1) Unknown command.

DEVICE_BUSY (2) Device is busy.

DEVICE_ERROR (3) Device with error.

ERROR_READING_OSF (4) Error in the reading of the valid date and hour flag.

ERROR_READING_RTC (5) Error in the date and hour reading.

ERROR_WRITING_RTC (6) Error in the date and hour writing.

ERROR_UPDATING_

SYSTEM_TIME (7)
Error in the update of the system’s date and hour.

INTERNAL_ERROR (8) Internal error.

INVALID_TIME (9) Invalid date and hour.

INPUT_OUT_OF_RANGE
(10)

Out of the limit of valid date and hour for the
system.

SNTP_NOT_ENABLE (11) Error generated when the SNTP service is not

enabled and it is done an attempt for modifying the
time zone.

Table 4-92. RTC_STATUS

TIMEZONESETTINGS

This structure is used to store the time zone value in the reading/setting requests of the RTC’s
function blocks and it is described in Table 4-93:

Structure Type Variable Description

TIMEZONE

SETTINGS

INT iHour Set time zone hour

INT iMinutes Set time zone minute

Table 4-93. TIMEZONESETTINGS

Note:

Function Blocks of Writing and Reading of Date and Hour: different libraries of NextoStandard,

which have function blocks or functions that may perform access of reading and writing of date and

hour in the system, are not indicated. The NextoStandard library has the appropriate interfaces for
writing and reading the system’s date and hour accordingly and for informing the correct diagnostics.

4. Configuration

 148

User Files Memory

Nexto Series CPUs have a memory area destined to the general data storage, in other words, the user

can store several project files of any format in the CPU memory. This memory area varies according

to the CPU model used (check Technical Description - Specific Features chapter).

In order to use this area, the user must access a project in the MasterTool IEC XE software and click

on the Devices Tree, placed at the program left. Double click on the Device item and, after selecting

the CPU in the Communication Settings tab which will be open, select the Files tab and click on

Refresh, both in the computer files column (left) and in the CPU files column (right) as shown on
Figure 4-63.

Figure 4-63. User Files Access

After updating the CPU column of files, the root directory of files stored in the CPU will be shown.
Then it will be possible to select the folder where the files will be transferred to. The

"InternalMemory" folder is a default folder to be used to store files in the CPU’s internal memory,

since it is not possible to transfer files to the root directory. If necessary, the user can create other
folders in the root directory or subfolders inside the "InternalMemory" folder. The "memorycard"

folder is the directory where the memory card is mounted, if it is inserted into the CPU. Files which

are transferred to the "memorycard" are being transferred directly into the memory card. As new
features are being added to the product, some folders may appear and which should be ignored by the

user.

ATTENTION:

In the case where the memory card is inserted after the CPU startup, an username and password will
be requested to perform the MasterTool IEC XE access and/or file transfers to the memory card or

vice versa. The standard user with privileges to access the CPU is "Owner" and the default password

for that user is "Owner."

In order to perform a file transfer from the microcomputer to the CPU just select the desired file in
the left column and press the ">>" key located in the center of the screen, as shown in Figure 4-64.

The download time will vary depending on file size and cycle time (execution) of the current

application of the CPU and may take several minutes.

4. Configuration

 149

The user does not need to be in Run Mode or connected to the CPU to perform the transfers, since it

has the ability to connect automatically when the user performs the transfer.

Figure 4-64. Files Transference

ATTENTION:
The files contained in the folder of a project created by MasterTool IEC XE have special names

reserved by the system in this way cannot be transferred through the Files tab. If the user wishes to

transfer a project to the user memory, you must compact the folder and then download the

compressed file (* .zip for example).

In case it is necessary to transfer documents from the CPU to the PC in which the MasterTool IEC

XE software is installed, the user must follow a very similar procedure to the previously described, as

the file must be selected from the right column and the button “<<” pressed, placed on the center of

the screen.

Furthermore, the user has some operation options in the storing files area, which are the following:

 New directory : allows the creation of a new folder in the user memory area

 Delete item : allows the files excluding in the folders in the user memory area

 Refresh : allows the file updating, on the MasterTool IEC XE screen, of the files in the user

memory area and in the computer

4. Configuration

 150

Figure 4-65. Utilization Options

ATTENTION:

For a CPU in Stop Mode or with no application, the transfer rate to the internal memory is
approximately 150 Kbytes/s.

Memory Card

Among other memories, the NX3010, NX3020 and NX3030 Nexto Series CPUs allow the user the

utilization of a memory card. It is defined according the features described in Memory Card Interface

chapter which stores, among other files, the project and application in the CPU internal memory.

When the card is inserted in the CPU and it presents a file type different from FAT32, it

automatically identifies those files and questions the user if he wants to format the files. In negative

case the user cannot use the card, as it is not mounted. A message informing the format is not

recognized is presented and the card presence is not displayed either. If the user decides to format the
files, the CPU takes a few minutes to execute the operation, depending on the cycle time (execution)

of the application which is running in the CPU. Once the memory card is mounted, the CPU will read

its general information, leaving access to the slower memory card in the first few minutes. This
procedure is done only when the card is inserted or in case of the CPU reset.

ATTENTION:

It is recommended to format the memory card directly in the Nexto CPU in order to avoid possible

use problems, mounting time increase or even the incorrect functioning. It is not recommended to
remove the memory card or de-energize the CPU during the formatting or during the files transfer as

it can cause the loss of data as well as irreversible damages.

During the project configuration, in the MasterTool IEC XE software, the user enables the CPU

project copy option for the memory card or the project copy from the card to the CPU. On this same
screen the user can configure the passwords, which control the information use. For further

information regarding the table, see Project Parameters chapter.

4. Configuration

 151

Figure 4-66. Memory Card Configuration

When a password is configured for the memory card in MasterTool, it is necessary to perform the
following steps so that when the project is sent, the encrypted file which is created by MasterTool has

the password included in its content and it is also sent.

First set up (s) password (s) and click on "OK". The password in this case should contain only

numeric characters. At this time passwords were recorded and the next step is run in the
Communication menu the command "Create boot Application". In order to perform this procedure it

is not possible to be logged on the CPU. After running this command, two files are created: one with

the "app" extension and another with "crc" extension. In order to finish the setup operation of the
password(s) it is necessary to click again the "Memory Card" key which is in the configuration of the

CPU General Parameters and then locate the file with the "crc" generated in the previous step, using

the "Find File ..." key. Performed these steps, the MasterTool IEC XE will send all the files necessary
to perform the operations of sending and receiving projects via memory card.

In case the card is mounted, the password will be recorded on it, otherwise the set password in

MasterTool will be requested if the user try to transfer the project from the CPU to the card.

To execute the CPU sending to the memory card or vice-versa, the user must enable the function in
the MasterTool IEC XE software, type the password and access the “Memory Card” menu in the

CPU using the diagnostics key, and then select the desired transference option. After this, the

password will be requested if the user configured so during the application. So, with a short touch on
the diagnostic key the digits are incremented and with a long touch are confirmed. At the sixth

confirmed digit, the CPU will consider the password and begin the process. When both the

passwords from the application which is in the CPU and from the application which is in the memory

card are equal, it is not requested the passwords insertion in the CPU menu in order to make the
application transferences. For further information regarding the diagnostic key utilization, see One

Touch Diag chapter.

To remove the memory card, press the MS button with a long touch and wait until the card icon
disappears from the status screen on the graphic display.

ATTENTION:

If there is any file at memory card root named “NextoMemCard” or “Backup”, it will be deleted to

create the system folders with the same name, used by the CPU to store the project application and
the project archive. Folders with these names will not be overwritten.

4. Configuration

 152

MasterTool Access

The memory card access is connected to the same user memory screen in the MasterTool IEC XE

software, being it mounted in the folder called “Memory Card”. “NextoMemCard” and “Backup"
folders are created into the memory card every time the latter is inserted into the CPU. In case these

folders already exist, the system will recognize them and will not overwrite the folders.

Figure 4-67. Root Directory with Memory Card Inserted

The file transference happens in a similar way to the user memory utilization (User Files Memory).

Access the folder “MemoryCard” and send the files as depicted on Figure 4-68.

Figure 4-68. Files Stored in the Memory Card

Inside the memory card directory, additionally to the files which are stored into the card, it will be

also the “NextoMemCard” and “Backup” folders. In these folders both the application and the

4. Configuration

 153

current project are saved in case the user chooses to transfer them or to make a backup of them

through the CPU menu.

ATTENTION:
The files transference time depends on the interval time difference minus the average execution time

of the task (s) in execution (available time until the next task cycle), it means, the bigger this

difference for each task in an application, the faster will be the transference of a data from the

memory card to a CPU/MasterTool IEC XE or vice-versa. Transferring files to the memory card will
be slower than the transfer to the internal memory of the CPU. For a CPU in Stop Mode or with no

application, the transfer rate is close to 100 Kbytes/s.

CPU’s Informative and Configuration Menu

The access to the Informative Menu, the Nexto CPU configuration and the detailed diagnostics, are

available through levels and to access the menu information, change level and modify any
configuration, a long touch is required on the diagnostic button and to navigate through the items on

the same level, a short touch on the diagnostic button is required. See One Touch Diag chapter to

verify the functioning and the difference between the diagnostics button touch types.

Table 4-94 shows the menu levels and each screen type available in the CPU, if they are informative,

configurable or to return a level.

Level 1 Level 2 Level 3 Type

HARDWARE

TEMPERATURE - Informative

CONTRAST CONTRAST LEVEL Configurable

DATE AND HOUR - Informative

RETURN - Return level

LANGUAGES

ENGLISH >ENGLISH Configurable

PORTUGUESE >PORTUGUES Configurable

SPANISH >ESPANOL Configurable

RETURN - Return level

NETWORK

END. IP NET 1

-

Informative

MASK NET 1 Informative

END. IP NET 2 Informative

MASK NET 2 Informative

RETURN Return level

REDUNDANCY

IDENT. CP

-

Informative

ESTADO REM. Informative

SINCR. PROJ. Informative

RETURN Return level

SOFTWARE

FIRMWARE

-

Informative

BOOTLOADER Informative

PROC. AUX. Informative

RETURN Return level

MEM. CARD

CARD > CPU CPU PASSWORD Configurable

CPU > CARD CM PASSWORD Configurable

FORMAT CONFIRM ? Configurable

RETURN - Return level

RETURN - - Return level

Table 4-94. CPU Menu Levels

Notes:

Memory Card: the memory card is only available in the menu, if it is connected in the Nexto CPU.

4. Configuration

 154

Password: the memory card data access password is only necessary in case it is configured in the

MasterTool IEC XE software. You cannot edit the password via menu.

Network: the NET 2 interface items are only available in the NX3020 and NX3030 CPUs.

Redundancy: the “Redundancy” menu will only be available in case the NX3030 CPU is identified

as Redundant.

As shown on Table 4-94, between the available options to visualize and modify are the main data
necessary to user, as:

 Information about the hardware resources:

o TEMPERATURE – CPU Internal temperature (Ex.: 36 C 97 F)

o CONTRAST – Contrast setting of the CPU frontal display

o DATE AND TIME – Date and time set in the CPU (Ex.: 2001.01.31 00:00)

 Changing the menu language on the CPU:

o PORTUGUESE – Changes the language to Portuguese

o ENGLISH – Changes the language to English

o SPANISH – Changes the language to Spanish

 Visualization of information about the network set in the device:

o NET 1 IP ADDR. - Address (Ex.: 192.168.0.1)

o NET 1 MASK – Sub net mask (Ex.: 255.255.255.0)

o NET 2 IP ADDR - address (Ex.: 192.168.0.2)
o NET 2 MASK – Sub net mask (Ex.: 255.255.255.0)

 Information about the software versions:

o FIRMWARE – CPU software version (Ex.: 1.0.0.0)

o BOOTLOADER – CPU boot loader version (Ex.: 1.0.0.0)

o AUX. PROC. – CPU auxiliary processor version (Ex.: 1.0.0.0)

 Access to the PLC redundancy information:

o PLC ID – Informs the PLC identification in the redundancy. Possible information:

 CPA

 CPB

o REMOTE STATE – Informs the state of the remote redundant PLC. Possible states:

 ACTIVE

 STANDBY

 INACTIVE
 NOT CONFIG.

 STARTING

 UNAVAILABLE

o PROJ. SYNC. – Informs if the synchronization of the projects is enabled

o CONNECTED

o NOT CONNEC.
o DISABLED

o START SYNC.

o SYNCHRONIZED

 Access to the Memory card data:

o MEMCARD > CPU – Transference of the memory card project to the CPU
o CPU > MEMCARD – Transference of the CPU project to the memory card

o FORMAT – Formats the card to the FAT32 files system

4. Configuration

 155

Figure 4-69 describes an example of how to operate the Nexto CPUs menu through the contrast

adjust menu procedure from the Status screen. Besides to make the configuration easy, it is possible

to identify all screen levels, the touch type, to navigate through them and to modify other parameters
as language and the Memory Card, using the same access logic. The short touch shows the contrast is

being incremented (clearer) and in the next touch after its maximum value, it returns to the minimum

value (less clear). The long touch shows the confirmation of the desired contrast and its return to the
previous level.

Figure 4-69. Contrast Adjust

Besides the possibility of the Nexto CPUs menu to be closed through a long touch on the screen
diagnostic button RETURN from level 1, there are also other output conditions that are described

below:

 Short touch, at any moment, in the other modules existent on the bus, make the CPU disconnect

from the menu and show the desired module diagnostic

 Idle time, at any level, superior to 5 s.

Function Blocks and Functions

Special Function Blocks for Serial Interfaces

The special function blocks for serial interfaces make possible the local access (COM1 AND COM2)

and also access to remote serial ports (expansion modules). Therefore, the user can create his own

protocols and handle the serial ports as he wishes, following the IEC 61131-3 languages available in
the MasterTool IEC XE software. The blocks are available inside the Nexto Serial library which must

be added to the project so it’s possible to use them (to execute the library insertion procedure, see

MasterTool IEC XE Programming Manual – MP399608, chapter Library).

4. Configuration

 156

The special function blocks for serial interfaces can take several cycles (consecutives calls) to

complete the task execution. Sometimes a block can be completed in a single cycle, but in the general

case, needs several cycles. The task execution associated to a block can have many steps which some
depend on external events, that can be significantly delayed. The function block cannot implement

routines to occupy the time while waits for these events, because it would make the CPU busy. The

solution could be the creation of blocking function blocks, but this is not advisable because it would
increase the user application complexity, as normally, the multitask programming is not available.

Therefore, when an external event is waited, the serial function blocks are finished and the control is

returned to the main program. The task treatment continues in the next cycle, in other words, on the

next time the block is called.

Before describing the special function blocks for serial interfaces, it is important to know the Data

types, it means, the data type used by the blocks:

Data type Options Description

SERIAL_BAUDRATE

BAUD200

Lists all baud rate possibilities (bits per

second)

BAUD300

BAUD600

BAUD1200

BAUD1800

BAUD2400

BAUD4800

BAUD9600

BAUD19200

BAUD38400

BAUD57600

BAUD115200

SERIAL_DATABITS

DATABITS_5

Lists all data bits possibilities
DATABITS_6

DATABITS_7

DATABITS_8

SERIAL_HANDSHAKE

Defines all modem signal possibilities for the configurations:

RS232_RTS

Controls the Nexto CPU RS-232C port.

The transmitter is enabled to start the
transmission and disabled as soon as
possible after the transmission is

finished. For example, can be used to
control a RS-232/RS-485 external
converter.

RS232_RTS_OFF
Controls the RS-232C port of the Nexto

CPU. The RTS signal is always off.

RS232_RTS_ON
Controls the RS-232C port of the Nexto

CPU. The RTS signal is always on.

RS232_RTS_CTS

Controls the RS-232C port of the CPU
Nexto. In case the CTS is disabled, the

RTS is enabled. Then waits for the
CTS to be enabled to get the
transmission and RTS restarts as soon

as possible, at the end of transmission.
Ex: Controlling radio modems with the
same modem signal.

RS232_MANUAL

Controls the RS-232C port of the CPU

Nexto. The user is responsible to
control all the signals (RTS, DTR, CTS,
DSR, DCD).

SERIAL_MODE

NORMAL_MODE
Serial Communication Normal

Operation mode.

EXTENDED_MODE

Serial Communication Extended

Operation mode in which are provided
information about the received data
frame.

SERIAL_PARAMETERS Defines all configuration parameters of the serial port:

4. Configuration

 157

Data type Options Description

BAUDRATE Defined in SERIAL_BAUDRATE.

DATABITS Defined in SERIAL_DATABITS.

STOPBITS Defined in SERIAL_STOPBITS.

PARITY Defined in SERIAL_PARITY.

HANDSHAKE Defined in SERIAL_HANDSHAKE.

UART_RX_THRESHOLD

Byte quantity which must be received

to generate a new UART interruption.
Lower values make the TIMESTAMP

more precise when the EXTENDED
MODE is used and minimizes the
overrun errors. However, values too

low may cause too many interruptions
and delay the CPU.

RX_QUEUE_EXTENDED

When true, select the RX line and the

block extended mode.

SERIAL_RX_EXTENDED must be
used to receive data. On the other
hand, for the RX line with normal

format, the SERIAL_RX block must be
used to receive data.

MODE Defined at SERIAL_MODE

ENABLE_RX_ON_TX

When true, all the received byte during
the transmission will be discharged

instead going to the RX line. Used to
disable the full-duplex operation in the
RS-422 interface.

ENABLE_DCD_EVENT
When true, generates an external

event when the DCD is modified.

ENABLE_CTS_EVENT
When true, generates an external

event when the CTS is modified.

SERIAL_PARITY

PARITY_NONE

List all parity possibilities.

PARITY_ODD

PARITY_EVEN

PARITY_MARK

PARITY_SPACE

SERIAL_PORT

COM 1 List all available serial ports (COM 10,

COM 11, COM 12, COM 13, COM 14,
COM 15, COM 16, COM 17, COM 18,

and COM 19 – expansion modules).
COM 2

SERIAL_RX_CHAR_EXTENDED

Defines a character in the RX queue in extended mode.

RX_CHAR Data byte.

RX_ERROR Error code.

RX_TIMESTAMP

Silence due to the previous character

or due to another event which has
happen before this character (serial
port configuration, transmission

ending).

SERIAL_RX_QUEUE_STATUS

It has some fields which deliver information regarding RX queue

status/error, used when the normal format is utilized (no error and
timestamp information):

RX_FRAMING_ERRORS

Frame errors counter: character

incorrect formation – no stop bit,
incorrect baud rate, among other –
since the serial port configuration.

Returns to zero when it reaches the
maximum value (65535).

RX_PARITY_ERRORS

Parity errors counter, since the serial
port configuration. Returns to zero

when it reaches the maximum value
(65535).

RX_BREAK_ERRORS

Interruption errors counter, since the
serial port configuration, in other

words, active line higher than the
character time. Returns to zero when it

4. Configuration

 158

Data type Options Description

reaches the maximum value (65535).

RX_FIFO_OVERRUN_ERR
ORS

FIFO RX overrun errors counter, since

the serial port configuration, in other
words, error in the FIFO RX configured
threshold. Returns to zero when it

reaches the maximum value (65535).

RX_QUEUE_OVERRUN_E

RRORS

RX queue overrun errors counter, in

other words, the maximum characters
number (1024) was overflowed and the

data are being overwritten. Returns to
zero when it reaches the maximum
value (65535).

RX_ANY_ERRORS
Sum the last 5 error counters (frame,

parity, interruption, RX FIFO overrun,
RX queue overrun).

RX_REMAINING Number of characters in the RX queue.

SERIAL_STATUS

List of critic error codes that can be returned by the serial function block.
Each block returns specific errors, which will be described below:

NO_ERROR No errors.

ILLEGAL_*

Return the parameters with invalid
values or out of range:

- SERIAL_PORT

- BAUDRATE

- DATA_BITS

- PARITY

- STOP_BITS

- HANDSHAKE

- UART_RX_THRESHOLD

- TX_BUFF_LENGTH

- HANDSHAKE_METHOD

- RX_BUFF_LENGTH

PORT_BUSY
Indicates the serial port is being used
by another instance.

HW_ERROR_UART Hardware error detected in the UART.

HW_ERROR_REMOTE
Hardware error at communicating with

the remote serial port.

CTS_TIME-OUT_ON

Time-out while waiting for the CTS

enabling, in the RS-232 RTS/CTS
handshake, in the SERIAL_TX block.

CTS_TIME-OUT_OFF
Time-out while waiting for the CTS
disabling, in the RS-232 RTS/CTS

handshake, in the SERIAL_TX block.

TX_TIME-OUT_ERROR

Time-out while waiting for the

transmission ending in the SERIAL_TX
block.

RX_TIME-OUT_ERROR
Time-out while waiting for all

characters in the SERIAL_RX block or
the SERIAL_RX_EXTENDED block.

FB_SET_CTRL_NOT_ALL

OWED

The SET_CTRL block can’t be used in
case the handshake is different from

R232_MANUAL.

FB_GET_CTRL_NOT_ALL

OWED

The GET_CTRL block can’t be used in

case the handshake is different from
R232_MANUAL.

FB_SERIAL_RX_NOT_ALL

OWED

The SERIAL_RX isn’t available for the

RX queue, extended mode.

FB_SERIAL_RX_EXTENDE

D_NOT_ALLOWED

The SERIAL_RX isn’t available for the

RX queue, normal mode.

DCD_INTERRUPT_NOT_A
LLOWED

The interruption by the DCD signal

can’t be enabled in case the serial port
doesn’t have the respective pin.

CTS_INTERRUPT_NOT_A

LLOWED

The interruption by the CTS signal

can’t be enabled in case the
handshake is different from

4. Configuration

 159

Data type Options Description

R232_MANUAL or in case the serial

port doesn’t have the respective pin.

DSR_INTERRUPT_NOT_A
LLOWED

The interruption by the DSR signal

can’t be enabled in case the serial port
doesn’t have the respective pin.

NOT_CONFIGURED
The function block can’t be used before

the serial port configuration.

SERIAL_STOPBITS

STOPBITS_1

List all stop-bits possibilities. STOPBITS_2

STOPBITS_1_5

Table 4-95. Serial Function Blocks Data types

SERIAL_CFG

This function block is used to configure and initialize the desired serial port. After the block is called,

every RX and TX queue associated to the serial ports and the RX and TX FIFO are restarted.

Figure 4-70. Serial Configuration Block

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function
block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

PARAMETERS SERIAL_PARAMETERS
This structure defines the serial port

configuration parameters, as described in the
SERIAL_PARAMETERS data type.

Table 4-96 Serial_CFG Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is
completely executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being
executed. It is false otherwise.

ERROR BOOL

This variable is true when the block

concludes the execution with an error. It is
false otherwise. It is connected to the variable
DONE, as its status is showed after the block

conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the

STATUS structure will show the error found
during the block execution. The possible

states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- ILLEGAL_SERIAL_MODE,

- ILLEGAL_BAUDRATE

- ILLEGAL_DATA_BITS

- ILLEGAL_PARITY

- ILLEGAL_STOP_BITS

- ILLEGAL_HANDSHAKE

- ILLEGAL_UART_RX_THRESHOLD

4. Configuration

 160

- PORT_BUSY

- HW_ERROR_UART

 HW_ERROR_REMOTE

- DCD_INTERRUPT_NOT_ALLOWED

- CTS_INTERRUPT_NOT_ALLOWED

- DSR_INTERRUPT_NOT_ALLOWED

Table 4-97. Output Parameters Serial_CFG

Utilization example in ST language, after the library Nexto Serial is inserted in the project:

PROGRAM MainPrg

VAR

Config: SERIAL_CFG;

Port: SERIAL_PORT := COM1;

Parameters: SERIAL_PARAMETERS := (BAUDRATE := BAUD9600,

DATABITS := DATABITS_8,

STOPBITS := STOPBITS_1,

PARITY := PARITY_NONE,

HANDSHAKE := RS232_RTS,

UART_RX_THRESHOLD := 8,

MODE :=NORMAL_MODE,

ENABLE_RX_ON_TX := FALSE,

ENABLE_DCD_EVENT := FALSE,

ENABLE_CTS_EVENT := FALSE);

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Config.REQUEST := TRUE;

Config.PORT := Port;

Config.PARAMETERS := Parameters;

//FUNCTION:

Config();

//OUTPUTS:

Config.DONE;

Config.EXEC;

Config.ERROR;

Status := Config.STATUS; // If it’s necessary to treat the error

SERIAL_GET_CFG

The function block is used to capture the desired serial port configuration.

Figure 4-71. Block to Capture the Serial Configuration

Input parameters Type Description

REQUEST BOOL This variable, when true, enables the function block use.

PORT SERIAL_PORT Select the serial port, as described in the SERIAL_PORT data type.

Table 4-98. SERIAL_GET_CFG Input Parameters

4. Configuration

 161

Output parameters Type Description

DONE BOOL
This variable is true when the block is completely executed. It is false

otherwise.

EXEC BOOL This variable is true while the block is being executed. It is false otherwise.

ERROR BOOL

This variable is true when the block concludes the execution with an error. It

is false otherwise. It is connected to the variable DONE, as its status is
showed after the block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the STATUS structure will show the

error found during the block execution. The possible states, already
described in the SERIAL_STATUS data type, are:
- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- NOT_CONFIGURED

PARAMETERS
SERIAL_PARAME

TERS

This structure receives the serial port configuration parameters, as described

in the SERIAL_PARAMETERS data type.

Table 4-99. SERIAL_GET_CFG Output Parameters

Utilization example in ST language, after the library is inserted in the project:

PROGRAM MainPrg

VAR

GetConfig: SERIAL_GET_CFG;

Port: SERIAL_PORT := COM1;

Parameters: SERIAL_PARAMETERS;

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

GetConfig.REQUEST := TRUE;

GetConfig.PORT := Port;

//FUNCTION:

GetConfig();

//OUTPUTS:

GetConfig.DONE;

GetConfig.EXEC;

GetConfig.ERROR;

Status := GetConfig.STATUS; // If it’s necessary to treat the error.

Parameters := GetConfig.PARAMETERS; //Receive the parameters of desired

serial port.

SERIAL_GET_CTRL

This function block is used to read the CTS, DSR and DCD control signals, in case they are available

in the serial port. A false value will be returned when there are not control signals.

Figure 4-72. Block Used to Visualize the Control Signals

4. Configuration

 162

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function

block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

Table 4-100. SERIAL_GET_CTRL Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is

completely executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being
executed. It is false otherwise.

ERROR BOOL

This variable is true when the block concludes

the execution with an error. It is false otherwise.
It is connected to the variable DONE, as its
status is showed after the block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the

STATUS structure will show the error found
during the block execution. The possible states,
already described in the SERIAL_STATUS data

type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- FB_GET_CTRL_NOT_ALLOWED

- NOT_CONFIGURED

CTS_VALUE BOOL Value read in the CTS control signal.

DSR_VALUE BOOL Value read in the DSR control signal.

DCD_VALUE BOOL Value read in the DCD control signal.

Table 4-101. SERIAL_GET_CTRL Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

PROGRAM MainPrg

VAR

Get_Control: SERIAL_GET_CTRL;

Port: SERIAL_PORT := COM1;

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Get_Control.REQUEST := TRUE;

Get_Control.PORT := Port;

//FUNCTION:

Get_Control();

//OUTPUTS:

Get_Control.DONE;

Get_Control.EXEC;

Get_Control.ERROR;

Status := Get_Control.STATUS; // If it’s necessary to treat the error.

Get_Control.CTS_VALUE;

Get_Control.DSR_VALUE;

Get_Control.DCD_VALUE;

4. Configuration

 163

SERIAL_GET_RX_QUEUE_STATUS

This block is used to read some status information regarding the RX queue, specially developed for

the normal mode, but it can also be used in the extended mode.

Figure 4-73. Block Used to Visualize the RX Queue Status

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function
block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

Table 4-102. SERIAL_GET_RX_QUEUE_STATUS Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is

completely executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being

executed. It is false otherwise.

ERROR BOOL

This variable is true when the block concludes
the execution with an error. It is false

otherwise. It is connected to the variable
DONE, as its status is showed after the block
conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error found

during the block execution. The possible
states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- NOT_CONFIGURED

RXQ_STATUS
SERIAL_RX_QUEUE_

STATUS

Returns the RX queue status/error, as

described in the
SERIAL_RX_QUEUE_STATUS data type.

Table 4-103. SERIAL_GET_RX_QUEUE_STATUS Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

PROGRAM MainPrg

VAR

Get_Status: SERIAL_GET_RX_QUEUE_STATUS;

Port: SERIAL_PORT := COM1;

Status: SERIAL_STATUS;

Status_RX: SERIAL_RX_QUEUE_STATUS;

END_VAR

//INPUTS:

Get_Status.REQUEST := TRUE;

Get_Status.PORT := Port;

4. Configuration

 164

//FUNCTION:

Get_Status();

//OUTPUTS:

Get_Status.DONE;

Get_Status.EXEC;

Get_Status.ERROR;

Status := Get_Status.STATUS; //If it’s necessary to treat the

error

Status_RX := Get_Status.RXQ_STATUS; // If it’s necessary to treat the

error of the RX queue

SERIAL_PURGE_RX_QUEUE

This function block is used to clean the serial port RX queue, local and remote. The UART RX FIFO

is restarted too.

Figure 4-74. Block Used to Clean the RX Queue

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function

block use.

PORT SERIAL_PORT
Select the serial port, as described in the
SERIAL_PORT data type.

Table 4-104. SERIAL_PURGE_RX_QUEUE Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is
completely executed. It’s false otherwise.

EXEC BOOL
This variable is true while the block is being

executed. It’s false otherwise.

ERROR BOOL

This variable is true when the block concludes

the execution with an error. It’s false otherwise.
It is connected to the variable DONE, as its

status is showed after the block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the

STATUS structure will show the error found
during the block execution. The possible states,
already described in the SERIAL_STATUS data

type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- NOT_CONFIGURED

Table 4-105. SERIAL_PURGE_RX_QUEUE Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

4. Configuration

 165

PROGRAM MainPrg

VAR

Purge_Queue: SERIAL_PURGE_RX_QUEUE;

Port: SERIAL_PORT := COM1;

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Purge_Queue.REQUEST := TRUE;

Purge_Queue.PORT := Port;

//FUNCTION:

Purge_Queue();

//OUTPUTS:

Purge_Queue.DONE;

Purge_Queue.EXEC;

Purge_Queue.ERROR;

Status := Purge_Queue.STATUS; // If it’s necessary to treat the

error.

SERIAL_RX

This function block is used to receive a serial port buffer, using the RX queue normal mode. In this

mode, each character in the RX queue occupy a single byte which has the received data, storing 5, 6,

7 or 8 bits, according to the serial interface configuration.

Figure 4-75. Block Used to Read the Reception Buffer Values

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function
block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

RX_BUFFER_POINTER POINTER TO BYTE
Pointer of a byte array to receive the buffer

values.

RX_BUFFER_LENGTH UINT

Specify the expected character number in the

byte array. In case more than the expected
bytes are available, only the expected quantity

will be read from the byte array, the rest will be
leaved in the RX queue (maximum size equal
to 1024 characters).

RX_TIME-OUT UINT

Specify the time-out to receive the expected

character quantity. In case it is smaller than the
necessary to receive the characters, the
RX_TIME-OUT_ERROR output from the

STATUS parameter will be indicated. When the
specified value, in ms, is equal to zero, the
function will return the data within the buffer.

Table 4-106. SERIAL_RX Input Parameters

4. Configuration

 166

Output parameters Type Description

DONE BOOL
This variable is true when the block is

completely executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being

executed. It is false otherwise.

ERROR BOOL

This variable is true when the block concludes
the execution with an error. It is false otherwise.

It is connected to the variable DONE, as its
status is showed after the block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the
STATUS structure will show the error found

during the block execution. The possible states,
already described in the SERIAL_STATUS data
type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- ILLEGAL_RX_BUFF_LENGTH

- RX_TIME-OUT_ERROR

- FB_SERIAL_RX_NOT_ALLOWED

- NOT_CONFIGURED

RX_RECEIVED UINT

Returns the received characters number. This

number can be within zero and the configured
value in RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the

function block.

RX_REMAINING UINT

Returns the number of characters which are still

in the RX queue after the function block
execution.

Table 4-107. SERIAL_RX Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

PROGRAM MainPrg

VAR

Receive: SERIAL_RX;

Port: SERIAL_PORT := COM1;

Buffer_Pointer: ARRAY [0..1023] OF BYTE; //Max size.

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Receive.REQUEST := TRUE;

Receive.PORT := Port;

Receive.RX_BUFFER_POINTER := ADR(Buffer_Pointer);

Receive.RX_BUFFER_LENGTH := 1024; //Max size.

Receive.RX_TIMEOUT := 10000;

//FUNCTION:

Receive();

//OUTPUTS:

Receive.DONE;

Receive.EXEC;

Receive.ERROR;

Status := Receive.STATUS; //If it’s necessary to treat the error.

Receive.RX_RECEIVED;

Receive.RX_REMAINING;

4. Configuration

 167

SERIAL_RX_EXTENDED

This function block is used to receive a serial port buffer using the RX queue extended mode as

shown in the Serial Interfaces Configuration section.

Figure 4-76. Block Used for Reception Buffer Reading

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function
block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

RX_BUFFER_POINTER

POINTER TO

SERIAL_RX_CHAR_E
XTENDED

Pointer of a SERIAL_RX_CHAR_EXTENDED
array to receive the buffer values.

RX_BUFFER_LENGTH UINT

Specify the expected character number in the

SERIAL_RX_CHAR_EXTENDED array. In
case more than the expected bytes are
available, only the expected quantity will be

read from the byte array, the rest will be leaved
in the RX queue (maximum size equal to 1024
characters).

RX_TIME-OUT UINT

Specify the time-out to receive the expected

character quantity. In case it is smaller than the
necessary to receive the characters, the
RX_TIME-OUT_ERROR output from the

STATUS parameter will be indicated. When the
specified value, in ms, is equal to zero, the
function will return the data within the buffer.

Table 4-108. SERIAL_RX_EXTENDED Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is completely
executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being

executed. It is false otherwise.

ERROR BOOL

This variable is true when the block concludes the

execution with an error. It is false otherwise. It is
connected to the variable DONE, as its status is

showed after the block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the STATUS

structure will show the error found during the
block execution. The possible states, already
described in the SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- ILLEGAL_RX_BUFF_LENGTH

- RX_TIME-OUT_ERROR

- FB_SERIAL_RX_EXTENDED_NOT_ALLOWED

- NOT_CONFIGURED

RX_RECEIVED UINT

Returns the received characters number. This

number can be within zero and the configured
value in RX_BUFFER_LENGTH. In case it is
smaller, an error will be indicated by the function

block

4. Configuration

 168

RX_REMAINING UINT

Returns the number of characters which are still

in the RX queue after the function block
execution.

RX_SILENCE UINT

Returns the silence time in the RX queue,

measured since the last received character is
finished. The time unit is 10µs. This output
parameter type is important to detect the silence

time in protocols as MODBUS RTU. It might not
be the silence time after the last received
character by this function block, as it is only true if

RX_REMANING = 0.

Table 4-109. SERIAL_RX_EXTENDED Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

PROGRAM MainPrg

VAR

Receive_Ex: SERIAL_RX_EXTENDED;

Port: SERIAL_PORT := COM1;

Buffer_Pointer: ARRAY [0..1023] OF SERIAL_RX_CHAR_EXTENDED;

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Receive_Ex.REQUEST := TRUE;

Receive_Ex.PORT := Port;

Receive_Ex.RX_BUFFER_POINTER := ADR(Buffer_Pointer);

Receive_Ex.RX_BUFFER_LENGTH := 1024; //Max size.

Receive_Ex.RX_TIMEOUT := 10000;

//FUNCTION:

Receive_Ex();

//OUTPUTS:

Receive_Ex.DONE;

Receive_Ex.EXEC;

Receive_Ex.ERROR;

Status := Receive_Ex.STATUS; //If it’s necessary to treat the

error

Receive_Ex.RX_RECEIVED;

Receive_Ex.RX_REMAINING;

Receive_Ex.RX_SILENCE;

SERIAL_SET_CTRL

This block is used to write on the control signals (RTS and DTR), when they are available in the

serial port. It can also set a busy condition for the transmission, through BREAK parameter and it can
only be used if the modem signal is configured for RS232_MANUAL.

Figure 4-77. Block for Control Signals Writing

4. Configuration

 169

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the function

block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

RTS_VALUE BOOL Value to be written on RTS signal.

RTS_EN BOOL Enables the RTS_VALUE parameter writing.

DTR_VALUE BOOL Value to be written on DTR signal.

DTR_EN BOOL Enables the DTS_VALUE parameter writing.

BREAK BOOL
In case it’s true, enables logic 0 (busy) in the
transmission line.

Table 4-110. SERIAL_SET_CTRL Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is
completely executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being

executed. It is false otherwise.

ERROR BOOL

This variable is true when the block concludes

the execution with an error. It is false
otherwise. It is connected to the variable
DONE, as its status is showed after the block

conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the

STATUS structure will show the error found
during the block execution. The possible

states, already described in the
SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- FB_SET_CTRL_NOT_ALLOWED

- NOT_CONFIGURED

Table 4-111. SERIAL_SET_CTRL Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

PROGRAM MainPrg

VAR

Set_Control: SERIAL_SET_CTRL;

Port: SERIAL_PORT := COM1;

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Set_Control.REQUEST := TRUE;

Set_Control.PORT := Port;

Set_Control.RTS_VALUE := FALSE;

Set_Control.RTS_EN := FALSE;

Set_Control.DTR_VALUE := FALSE;

Set_Control.DTR_EN := FALSE;

Set_Control.BREAK := FALSE;

//FUNCTION:

Set_Control();

//OUTPUTS:

Set_Control.DONE;

4. Configuration

 170

Set_Control.EXEC;

Set_Control.ERROR;

Status := Set_Control.STATUS; // If it’s necessary to treat the

error.

SERIAL_TX

This function block is used to transmit a data buffer through serial port and it is only finalized after
all bytes were transmitted or after time-out (generating errors).

Figure 4-78. Block for Values Transmission by the Serial

Input parameters Type Description

REQUEST BOOL
This variable, when true, enables the
function block use.

PORT SERIAL_PORT
Select the serial port, as described in the

SERIAL_PORT data type.

TX_BUFFER_POINTER POINTER TO BYTE
Pointer of a byte array to transmit the buffer

values.

TX_BUFFER_LENGTH UINT
Specify the expected character number in
the byte array to be transmitted (TX queue

maximum size is 1024 characters).

TX_TIME-OUT UINT

Specify the time-out to complete the

transmission including the handshake
phase. The specified value, in ms, must be
positive and different than zero.

DELAY_BEFORE_TX UINT

Specified the delay, in ms, between the

function block call and the transmission
beginning. This variable can be used in
communications with some modems.

CLEAR_RX_BEFORE_TX BOOL

When true, the RX queue and the UART

FIFO RX are erased before the transmission
beginning. This behavior is typical in half-
duplex master/slave protocols.

Table 4-112. SERIAL_RX Input Parameters

Output parameters Type Description

DONE BOOL
This variable is true when the block is completely
executed. It is false otherwise.

EXEC BOOL
This variable is true while the block is being executed.

It is false otherwise.

ERROR BOOL

This variable is true when the block concludes the

execution with an error. It is false otherwise. It is
connected to the variable DONE, as its status is

showed after the block conclusion.

STATUS SERIAL_STATUS

In case the ERROR variable is true, the STATUS

structure will show the error found during the block
execution. The possible states, already described in

the SERIAL_STATUS data type, are:

- NO_ERROR

- ILLEGAL_SERIAL_PORT

- PORT_BUSY

- HW_ERROR_UART

- HW_ERROR_REMOTE

- ILLEGAL_TX_BUFF_LENGTH

4. Configuration

 171

- CTS_TIME-OUT_ON

- CTS_TIME-OUT_OFF

- TX_TIME-OUT_ERROR

- NOT_CONFIGURED

TX_TRANSMITTED UINT

Returns the transmitted byte number which must be

equal to TX_BUFFER_LENGTH, but can be smaller in
case some error has occurred during transmission.

Table 4-113. SERIAL_RX Output Parameters

Utilization example in ST language, after the library is inserted in the project and the serial port

configured:

PROGRAM MainPrg

VAR

Transmit: SERIAL_TX;

Port: SERIAL_PORT := COM1;

Buffer_Pointer: ARRAY [0..9] OF BYTE := [0,1,2,3,4,5,6,7,8,9];

Status: SERIAL_STATUS;

END_VAR

//INPUTS:

Transmit.REQUEST := TRUE;

Transmit.PORT := Port;

Transmit.TX_BUFFER_POINTER := ADR(Buffer_Pointer);

Transmit.TX_BUFFER_LENGTH := 10;

Transmit.TX_TIMEOUT := 10000;

Transmit.DELAY_BEFORE_TX := 1000;

Transmit.CLEAR_RX_BEFORE_TX := TRUE;

//FUNCTION:

Transmit();

//OUTPUTS:

Transmit.DONE;

Transmit.EXEC;

Transmit.ERROR;

Status := Transmit.STATUS; // If it’s necessary to treat the error.

Transmit.TX_TRANSMITTED;

Inputs and Outputs Update

Functionality used to update inputs and outputs in the applicative. It is not necessary to wait until the

cycle is finished.

When the function blocks to update the inputs and outputs are not used, the update is performed at
every cycle of the MainTask.

ATTENTION:

At the startup of a Nexto CPU, the inputs and outputs are only updated for reading and prepared for

writing when the MainTask is performed. All other system tasks that run before MainTask will be
with the inputs and outputs invalid.

4. Configuration

 172

REFRESH_INPUT

This function block is used to update the specified module inputs without the necessity to wait for the

cycle to be completed. It is important to notice that the filters configured in the MasterTool IEC XE
and the update time of the module inputs will have to be considered in effective time of the inputs

update in the application developed by the user.

ATTENTION:

The REFRESH_INPUT function must only be used in MainTask task.
To update inputs in other tasks, the option Enable I/O Update per Task must be selected, for further

information about this option, consult Table 4-1

ATTENTION:
REFRESH_INPUT function does not support inputs that have been mapped to symbolic variables.

For proper operation it is necessary that the input is mapped to a variable within the memory direct

representation of input variables (% I).

Figure 4-79. Block for Input Updating

Input parameters Type Description

byRackNumber BYTE Rack number

bySlotNumber BYTE
Position number where the module is
connected

Table 4-114. REFRESH_INPUT Input Parameters

Possible ERRORCODE:

 NoError: Execution success.

 IOModuleAbsent: The module was configured but is absent.

 IOModuleNotConfigured: The module was not configured.

 ParameterMismatch: This error is returned in case the Always Update Variable option is not set

or in case the REFRESH_INPUT function is called for a module that has only outputs.

 InputReadFail: Module internal critical failure (the function transmitted frame was not returned

within the defined time-out).

 FrameTransmitError: Module internal critical failure (error during the frame transmission in the

function).

 BusBusy: Module internal critical failure (the bus is not enabled for frame transmission in the

function).

Utilization example in ST language:

PROGRAM MainPrg

VAR

Info: ERRORCODE;

byRackNumber: BYTE;

bySlotNumber: BYTE;

END_VAR

/INPUTS:

byRackNumber := 0;

bySlotNumber := 10;

4. Configuration

 173

//FUNCTION:

Info := REFRESH_INPUT (byRackNumber, bySlotNumber); //Function call.

//Variable ‘Info’ receives possible function errors.

REFRESH_OUTPUT

This function block is used to update the specified module outputs. It is not necessary to wait until
the cycle is finished. It is important to notice that the update time of the module outputs will have to

be considered in the effective time of the outputs update in the application developed by the user.

ATTENTION:
The REFRESH_OUTPUT function must only be used in MainTask task

To update outputs in other tasks, the option, Enable I/O Update per Task must be selected, for

further information about this option, consult Table 4-1.

ATTENTION:

REFRESH_OUTPUT function does not support inputs that have been mapped to symbolic variables.

For proper operation it is necessary that the input is mapped to a variable within the memory direct

representation of input variables (% Q).

Figure 4-80. Block for Output Updating

Input parameters Type Description

byRackNumber BYTE Rack number

bySlotNumber BYTE
Position number where the module is
connected

Table 4-115. REFRESH_OUTPUT Input Parameters

Possible ERRORCODE:

 NoError: Execution success.

 IOModuleAbsent: The module was configured but is absent.

 IOModuleNotConfigured: The module was not configured.

 ParameterMismatch: This error is returned in case the Always Update Variable option is not set

or in case the REFRESH_OUTPUT function is called for a module that has only inputs.

 OutputWriteFail: Module internal critical failure (the function transmitted frame was not returned

within the defined time-out).

 FrameTransmitError: Module internal critical failure (error during the frame transmission in the

function).

 BusBusy: Module internal critical failure (o the bus isn’t enabled for frame transmission in the

function).

Utilization example in ST language:

PROGRAM MainPrg

VAR

Info: ERRORCODE;

byRackNumber: BYTE;

bySlotNumber: BYTE;

END_VAR

4. Configuration

 174

//INPUTS:

byRackNumber := 0;

bySlotNumber := 10;

//FUNCTION:

//Function call.

Info := REFRESH_OUTPUT (byRackNumber, bySlotNumber);

//Variable ‘Info’ receives possible function errors.

PID Function Block

The PID function block is used to control a real process. The block is always available in the

NextoPID library which must be added to the project (for the library insertion proceeding, see

MasterTool IEC XE Programming Manual – MP399608, chapter Library).

Figure 4-81. PID Block

Input parameters Type Description

SP REAL

Set point.

The unit and the interval must be the same in

comparison with the PV as both variables can be
compared.

PV REAL

Process variable.

The unit and the interval must be the same in
comparison with the SP as both variables can be
compared.

Gp REAL
Proportional gain used to calculate the PID block

proportional action.

Td REAL
Derivative time, in seconds, used to calculate the

PID block derivative action.

Ti REAL
Integral time, in seconds, used to calculate the PID
block integral action.

BIAS REAL Compensation added to the handled variable.

ManualMV REAL
Value attributed to the manipulated variable when
using the manual mode.

MaxVarMV REAL
Manipulated variable maximum variation between

the actual cycle and the previous cycle. In case is

4. Configuration

 175

Input parameters Type Description

zero or negative, the PID block has no MV variation

limit.

MaxMV REAL

Manipulated variable maximum value.

In case the calculated value is higher than the

configured, the MV will be the same as MaxMV.

MinMV REAL

Manipulated variable minimum value.

In case the calculated value is smaller than the

configured, the MV will be the same as MinMV.

DeadBand REAL

Dead band.

Minimum error value able to generate a MV

correction in automatic mode, in other words, little
errors (smaller than the DeadBand) won’t cause any
variation in the defined variable.

MaxPV REAL

Process variable maximum value.

In case the PV value is higher than the configured,
the PID block will stop the calculus and an error

code will be generated in the output.

MinPV REAL

Process variable minimum value.

In case the PV value is smaller than the configured,

the PID block will stop the calculus and an error
code will be generated in the output.

SampleTime REAL

Sample time.

Defines the PID block call period, in seconds,

varying from 0.001s to 1000s. This parameter is not
considered if the MeasureST is true.

EnableP BOOL
When true, enables the PID block proportional
action. In case is false, the proportional action is

zero.

EnableD BOOL
When true, enables the PID block derivative action.

In case is false, the derivative action is zero.

EnableI BOOL
When true, enables the PID block integral action. In
case is false, the integral action is zero.

DerivPV BOOL

When true, the derivative action is calculated in the

process variable. It’s different than zero only when
PV is changed. In case if false, the derivative action
is calculated in the error, when depends on the SP

and PV variables.

Manual BOOL

When true, enables the manual mode. In case is

false, enables the automatic mode. The PID block
control mode affects the way the MV and the

integral action are calculated.

Direct BOOL

When true, select the direct control when the MV is

included in the answer to be included in PV. In case
is false, select the reverse control when MV is
subtracted from the answer to be included in PV.

MeasureST BOOL
When true, the sample time is measured. When

false, the sample time is informed by the user in the
SampleTime variable.

Restart BOOL

When true, the PID block is restarted, initializing all
variables. It can also be used to erase the integral

and derivative actions and the error codes in the
block output.

IntegralAction REAL
Stores the integral action which is eliminated in
error state.

Table 4-116 PID. Block Input Parameters

4. Configuration

 176

Output parameters Type Description

MV REAL Manipulated Variable.

EffST REAL
Real sample time, in seconds, used for the

derivative action and MV limit rate calculus.

Eff3ST REAL
Real sample time from the last three cycles, in

seconds, used for the derivative action calculus.

MaxEffST REAL
Real sample time maximum value, in seconds,
since the PID block initialization.

MinEffST REAL
Real sample time minimum value, in seconds,

since the PID block initialization.

ErrorCode UINT

Error code showed by the PID block. To

remove it, the problem must be solved and the
block restarted through the Restart variable.

The error codes are described below:

0: no error

1: MaxMV < MinMV

2: MaxPV < MinPV

3: PV > MaxPV

4: PV < MinPV

5: Ti < 0,001 s (with the integral action enabled)

6: Td < 0 s (with the derivative action enabled)

7: Gp ≤ 0

8: MaxVarMV < 0

9: DeadBand < 0

10: SampleTime < 0,001 s or SampleTime >
1000 s (with MeasureST = false)

Table 4-117 PID. Block Output Parameters

Figure 4-82 shows the block diagram of a PID loop, as the Nexto CPU execution.

Figure 4-82. PID Diagram

4. Configuration

 177

Timer Retain

The time retain is a function block developed for applications as production line clocks, that need to

store its value and restart the counting from the same point in case of power supply failure. The
values stored by the function block, are only zero in case of a Cold Reset, Original Reset or a new

application download (see the MasterTool IEC XE User Manual - MU299609), when the counters

keep working, even when the application is stopped (Stop Mode).

ATTENTION:

It is important to stress that, for the correct functioning of the Timer Retain blocks, the variables

must be declared as Retain (VAR_RETAIN). It’s also important to notice that in simulation mode,

the Timer Retain function blocks do not run properly due to need the Nexto CPU for correct
behavior.

The three blocks already available in the MasterTool IEC XE software Nexto library are described

below (for the library insertion proceeding, see MasterTool IEC XE Programming Manual –

MP399608, chapter Library).

TOF_RET

The function block TOF_RET implements a time delay to disable an output. When the input IN has

its state changed from TRUE to False, or a falling edge, the specified time PT will be counted and the
Q output will be driven to FALSE at the end of it. When the input IN is in logic level 1 (TRUE), the

output Q remain in the same state (TRUE), even if this happened in the middle of the counting

process. The PT time can be changed during the counting as the block assumes the new value if the

counting hasn’t finished. Figure 4-83 depicts the TOF_RET block and Figure 4-84 shows its graphic
behavior.

Figure 4-83. TOF_RET Block

Input parameters Type Description

IN BOOL
This variable, when receives a falling edge, enables the

block counting.

PT TIME This variable specifies the block counting limit (time delay).

Table 4-118. TOF_RET Input Parameters

Output parameters Type Description

Q BOOL
This variable executes a falling edge as the PT variable

(time delay) reaches its maximum value.

ET TIME This variable shows the current time delay.

Table 4-119. TOF_RET Output Parameters

4. Configuration

 178

Figure 4-84. TOF_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM MainPrg

VAR RETAIN

bStart : BOOL := TRUE;

TOF_RET : TOF_RET;

END_VAR

// When bStart=FALSE starts counting

TOF_RET(IN := bStart,

PT := T#20S);

// Actions executed at the end of the counting

IF (TOF_RET.Q = FALSE) THEN

bStart := TRUE;

END_IF

TON_RET

The TON_RET implements a time delay to enable an output. When the input IN has its state changed

from FALSE to TRUE, or a rising edge, the specified time PT will be counted and the Q output will

be driven to TRUE at the end of it. When the input IN is in logic level 0 (FALSE), the output Q
remain in the same state (FALSE), even if it happens in the middle of the counting process. The PT

time can be changed during the counting as the block assumes the new value if the counting hasn’t

finished. Figure 4-85 depicts the TON_RET block and Figure 4-86 shows its graphic behavior.

Figure 4-85. TON_RET Function Block

Input parameters Type Description

IN BOOL
This variable, when receives a rising edge,

enables the function block counting.

PT TIME
This variable specifies the block counting limit
(time delay).

Table 4-120. TON_RET Input Parameters

Output parameters Type Description

Q BOOL
This variable executes a rising edge as the PT
variable (time delay) reaches its maximum

4. Configuration

 179

value.

ET TIME This variable shows the current time delay.

Table 4-121. TON_RET Output Parameters

Figure 4-86. TON_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM MainPrg

VAR RETAIN

bStart : BOOL;

TON_RET : TON_RET;

END_VAR

// When bStart=TRUE starts counting

TON_RET(IN := bStart,

PT := T#20S);

// Actions executed at the end of the counting

IF (TON_RET.Q = TRUE) THEN

bStart := FALSE;

END_IF

TP_RET

The TP_RET function block works as a trigger. The timer which starts when the IN input has its state

changed from FALSE to TRUE, that is, a rising edge, it is increased until the PT time limit is

reached. During the counting, the Q output is TRUE, otherwise it is FALSE. The PT time can be
changed during the counting as the block assumes the new value if the counting has not finished.

Figure 4-87 depicts the TP_RET and Figure 4-88 shows its graphic behavior.

Figure 4-87. TP_RET Function Block

Input parameters Type Description

IN BOOL
This variable, when receives a rising edge,

enables the function block counting.

PT TIME
This variable specifies the function block

counting limit (time delay).

Table 4-122. TP_RET Input Parameters

4. Configuration

 180

Output parameters Type Description

Q BOOL
This variable is true during the counting,

otherwise is false.

ET TIME This variable shows the current time delay.

Table 4-123. TP_RET Output Parameters

Figure 4-88. TP_RET Block Graphic Behavior

Utilization example in ST language:

PROGRAM MainPrg

VAR RETAIN

bStart : BOOL;

TP_RET : TP_RET;

END_VAR

// Configure TP_NR

TP_RET(IN := bStart,

PT := T#20S);

bStart := FALSE;

// Actions executed during the counting

IF (TP_RET.Q = TRUE) THEN

// Executes while the counter is activated

ELSE

// Executes when the counter is deactivated

END_IF

Non-Redundant Timer

The non-redundant timer is used in applications for the redundant NX3030 CPU which need a timer

in the non-redundant program of a half-cluster. This timer does not use the IEC timer, therefore, it
will not be synchronized in case the reserve half-cluster assumes the active status and the active one

goes for reserve.

The three types of blocks already available in the NextoStandard library of the MasterTool IEC XE

software are describe as follows (for doing the procedure of library’s inclusion, check MasterTool
IEC XE Programming Manual – MP399608, chapter Library.

TOF_NR

The TOF_NR function block implements a delay time for disabling an output and has its functioning
and configuration similar to the TOF_RET function block, differentiating itself only for not being

redundant nor retentive.

4. Configuration

 181

Figure 4-89. TOF_NR Function Block

Utilization example in ST language:

PROGRAM NonSkippedProg

VAR

bStart : BOOL := TRUE;

TOF_NR : TOF_NR;

END_VAR

// When bStart=FALSE starts the counting

TOF_NR(IN := bStart,

PT := T#20S);

// Actions executed at the end of the counting

IF (TOF_NR.Q = FALSE) THEN

bStart := TRUE;

END_IF

TON_NR

The TON_NR function block implements a delay time to enable an output and has its functioning

and configuration similar to the TON_RET function block, differentiating only for not being

redundant nor retentive.

Figure 4-90. TON_NR Function Block

Utilization example in ST language:

PROGRAM NonSkippedProg

VAR

bStart : BOOL;

TON_NR : TON_NR;

END_VAR

// When bStart=TRUE starts the counting

TON_NR(IN := bStart,

PT := T#20S);

// Actions executed at the end of the counting

IF (TON_NR.Q = TRUE) THEN

bStart := FALSE;

END_IF

4. Configuration

 182

TP_NR

The TP_NR function block works as a trigger and has its functioning and configuration similar to the

TP_RET function block, differentiating only for not being redundant nor retentive.

Figure 4-91. TP_NR Function Block

Utilization example in ST language:

PROGRAM NonSkippedProg

VAR

bStart : BOOL;

TP_NR : TP_NR;

END_VAR

// Configure TP_NR

TP_NR(IN := bStart,

PT := T#20S);

bStart := FALSE;

// Actions executed during the counting

IF (TP_NR.Q = TRUE) THEN

// Executes while the counter is activated

ELSE

// Executes when the counter is deactivated

END_IF

User Log

Feature that allows the user to create own records and write to log files on the memory card present

in the CPU. The files are generated in a specific directory of the memory card in the CSV format,
allowing viewing in text editors and spreadsheets. The separator was the semicolon character. For

more information about the use of the memory card, see chapter Configuration Memory Card.

There are two functions available, one for log information and another to remove all records. The
following is a description of the types of data used by the functions:

Data type Option Description

USER_LOG_EVENT_TYPES

USER_LOG_EVENT_ERROR The user is free to use the best indication

according to log message severity. USER_LOG_EVENT_DEBUG

USER_LOG_EVENT_INFO

USER_LOG_EVENT_WARN

USER_LOG_MESSAGE Log message with 150-character max.

USER_LOG_ERROR_CODES

USER_LOG_OK The operation was performed successfully.

USER_LOG_FAILED

The operation was not performed successfully.

The reason for the failure can be checked in
the system logs – see chapter Maintenance -
System Log.

USER_LOG_BUFFER_FULL
Messages are being added beyond the

processing capacity.

4. Configuration

 183

USER_LOG_NO_MEMORY
At the time, there were no resources to perform

the operation.

USER_LOG_FILE_SYSTEM_ERROR

There was an error while accessing the
memory card or there is no available space.

Error information can be verified in the logs of
system – see chapter Maintenance - System
Log.

USER_LOG_NO_MEMORY_CARD There is a memory card present in the CPU.

USER_LOG_MEMORY_CARD_FULL
There is no free space available on the

memory card.

USER_LOG_PROCESSING
The resource is busy executing the last

operation, for example, deleting all log files.

Table 4-124. Data Type for User Log

The following are described the two functions available in the Lib Logs library on MasterTool IEC

XE 1.40. To perform the procedure of inserting a library, see the MasterTool IEC Programming

Manual – MP399609, chapter Libraries.

ATTENTION:

The User Logs are available only until version 1.3.0.20 of Nexto Series CPUs. In the same way to

use this feature is necessary version 1.40 or higher of MasterTool IEC XE.

UserLogAdd

This function is used to add a new user log message, adding in a new line to the log file on the

memory card. The message must have a maximum length of 150 characters, and the event type of the

message. Application variables can be registered using conversion to string and concatenation with
the main message. The date and time information in UTC (timestamp) is automatically added in the

message with a resolution of milliseconds where the event was registered. The date and time

information is also used in the formation of the names of the log files.

The UserLogAdd function can be used to enter multiple messages within a single task and also in
different application tasks. However independent of each execution of the function in the application,

being on the same task or on different tasks, all use the same feature to record the desired messages.

For this reason it is recommended that the addition of messages using the UserLogAdd function in
the application be held every 50 ms to prevent the return of buffer overload. If the function is

performed in periods shorter than the indicated, but respect the average time of 50 ms between each

message addition at the end of the interval for the task, also prevents the return of buffer overload. So
that the logs are added correctly, it is important to respect time limits when the card is inserted and at

startup of the CPU, mentioned in chapter Configuration Memory Card. After the operation the

function returns the options for the given type USER_LOG_ERROR_CODES as Table 4-124. When

the function return is not USER_LOG_OK, the message was not registered and the function
UserLogAdd should be re-executed with the desired message. In case of return of consecutive

writing failures, the memory card can be damaged. The replacement by a healthy memory card

ensures that the latest logged messages will be recorded on the card that is not damaged, since the
CPU is not restarted.

The Figure 4-92 represents the function UserLogAdd and Table 4-125 the input parameters:

Figure 4-92. UserLogAdd Function

4. Configuration

 184

Input Parameters Type Description

byEventType BYTE
This variable specifies the event type of the log being

added as options for the USER_LOG_EVENT_TYPES
data type.

pszMessage USER_LOG_MESSAGE
This variable should contain the set of characters that
compose the message to be added to the log file. The

message must contain a maximum of 150 characters.

Table 4-125. UserLogAdd Input Parameters

The log files are generated and organized on the memory card in a specific directory path depending

on the CPU serial number and the firmware version installed. For example, for a CPU with serial
number 445627 and firmware version 1.4.0.4, the location where the log files should be written to the

memory card is MemoryCard/UserLog/445627/1.4.0.4/.

The names of the log files are formed by the date and time (timestamp) of the first message. Except
when there's a problem to use this name, for example, another existing file with the same name, in

this situation it is used the instant date and time. The filename follows the following pattern:

year/month/day/hour/minute/second/millisecond.CSV. In case of file access problem due to defective

sector not enabling to continue writing, will be added to the name of this file the extension
".corrupted" and a new file will be created. The amount of logs per file is not fixed, varying

depending on the size of messages. The amount of created files is limited to 1024 with maximum size

of 1 MB each, so the memory card requires 1 GB of free space. When it reaches the limit of 1024
files created on the memory card, during CPU operation, the oldest files are removed so that files

with latest logs are preserved, even in cases of partial manual removal of the files in the directory

where the files are being written.

The viewing of the log files can be performed through worksheets or conventional text editors. The

concatenated information, for improved visualization, may use semicolons between the strings of the

message to separate them. One must be careful in formatting cells with floating point values.

Utilization example in ST language:

PROGRAM MainPrg

VAR

 eLogError : USER_LOG_ERROR_CODES;

 sMessage :USER_LOG_MESSAGE;

END_VAR

IF (m_rTemperature > MAX_TEMPERATURE_ACCEPT) THEN

 sMessage := 'Temperature higher than expected: ';

 sMessage := concat(sMessage, REAL_TO_STRING(m_rTemperature));

 sMessage := concat(sMessage, 'º');

 eLogError := UserLogAdd(USER_LOG_EVENT_WARN, sMessage);

//‘eLogError’ variable gets possible function errors.

END_IF

Log file content example: (UserLog-201308271506245738.csv)

Model; NX3030

Serial number; 445627

Firmware version; 1.4.0.4

27/08/2013 15:06:24.5738; WARN; Overtemperature: 25º

27/08/2013 16:37:45.3476; WARN; Overtemperature: 25º

28/08/2013 09:10:55.4201; WARN; Overtemperature: 26º

4. Configuration

 185

UserLogDeleteAll

The UserLogDeleteAll function performs the deletion of log files present in the directory created

specifically for the CPU in which is inserted the memory card, i.e. are only deleted the logs contained
in the directory named with the CPU firmware version that exists within the directory with the CPU

serial version. The log files deleted are only files that exist at the time of memory card mounting and

the generated by the UserLogAdd function. Logs of other CPUs and files added manually by the user
during execution are not deleted. The Figure 4-93 represents the function UserLogDeleteAll:

Figure 4-93. UserLogDeleteAll Function

Utilization example in ST language:

PROGRAM MainPrg

VAR

eLogError : USER_LOG_ERROR_CODES;

END_VAR

IF (m_DeleteLogs = TRUE) THEN

eLogError := UserLogDeleteAll();

m_DeleteLogs := FALSE;

//‘eLogError’ variable gets possibles function errors.

END_IF

ATTENTION:

The UserLogDeleteAll function's return does not indicate operation completed, just confirmation of

execution that can take a large amount of time if there are hundreds of log files in the directory. The
function to record the new user log is unavailable right now, returning the

USER_LOG_PROCESSING option for any operation. The result of the operation can also be

checked in the system log.

SNMP

Introduction

SNMP (Simple Network Management Protocol) is a protocol widely used by network administrators

to provide important information and diagnostic equipment present in a given Ethernet network.

This protocol uses the concept of agent and manager, in which the manager sends read requests or
write certain objects to the agent. Through a MIB (Management Information Base) the manager is

aware of existing objects in the agent, and thus can make requests of these objects, respecting the

read permissions or writing the same.

MIB is a collection of information organized hierarchically with each object of this tree is called OID

(Object Identifier).

For all equipment with SNMP, it is mandatory to support MIB-II. In this MIB are described key

information for managing Ethernet networks.

SNMP in Nexto CPUs

The CPUs of the Nexto Series behave as agents in SNMP communication. The information made

available through SNMP cannot be manipulated or accessed through the user application, requiring
an external SNMP manager to perform access. Table 4-126 contains the objects available in the

4. Configuration

 186

Nexto CPUs. This feature is available after firmware version 1.4.0.33 of the Nexto Series CPUs

supports the protocols SNMPv1, SNMPv2c and SNMPv3, and support the MIB-II, where required

objects are described in RFC-1213.

OID Nome Description

1.3.6.1.2.1.1 System
Contains name, description, location and other
equipment identification information.

1.3.6.1.2.1.2 Interfaces

Contains information of the machine's network

interfaces.
The ifTable table (OID 1.3.6.1.2.1.2.2) has the indexes
6 and 7 available, which can be viewed by the network

interfaces statistics NET 1 and NET 2, respectively, of
the Nexto series CPUs.

1.3.6.1.2.1.3 At
Contains information of the last required connections to

the agent

1.3.6.1.2.1.4 IP Contains statistical connections using IP protocol

1.3.6.1.2.1.5 ICMP Contains statistical connections using ICMP protocol

1.3.6.1.2.1.6 TCP Contains statistical connections using TCP protocol

1.3.6.1.2.1.7 UDP Contains statistical connections using UDP protocol

1.3.6.1.2.1.11 SNMP Contains statistical connections using SNMP protocol

1.3.6.1.2.1.31 ifMib Extension to Interfaces, OID 1.3.6.1.2.1.2

Table 4-126. MID II Objects – Nexto Series SNMP Agent

By default, the SNMP agent is activated, i.e., the service is initialized at the time the CPU is started.

The access to the information agent is via the Ethernet interfaces NET 1 and NET 2 of the Nexto
Series CPUs on TCP port 161. So when the service is active, the agent information can be accessed

through any one of the two Ethernet interfaces, if available. It is not possible to provide agent

information through Ethernet interfaces NX5000 modules. In Figure 4-94 an example is shown

SNMP manager, in which some values are read.

Figure 4-94. SNMP Manager Example

For SNMPv3, in which there is user authentication and password to requests via SNMP protocol, is

provided a standard user described in the User and SNMP Communities section.

If you want to disable the service, change the SNMPv3 user or communities for SNMPv1 / v2c
predefined, you must access the web page of the CPU. For details, see the Configuration section.

4. Configuration

 187

Private MIB

In addition to support MIB-II, the Nexto Series CPUs support Private MIB from firmware version

1.4.0.25. For it has been reserved for PEN (Private Enterprise Number) with the unique number
43427 for products Altus. Thus, all private objects of Nexto Series can be accessed through the OID

.1.3.6.1.4.1.43427.1 (iso.org.dod. internet.private.enterprise.Altus SA.Nexto). In this OID three

relevant subdivisions Nexto CPUs, as seen in Figure 4-95.

All private objects are described in MIBs ALTUS-NEXTO-NX3004-MIB, ALTUS-NEXTO-

NX3005-MIB, ALTUS-NEXTO-NX3010-MIB, ALTUS-NEXTO-NX3020-MIB and ALTUS-

NEXTO-NX3030-MIB and can be found in www.altus.com.br/site_en/.

Figure 4-95. OID Tree View

The objects available via SNMP in the Nexto Series CPUs are existing diagnostics, which are

important for managing networks. These objects can be seen in Table 4-127.

To access them through an SNMP manager the user must make requests from OID

.1.3.6.1.4.1.43427.1.4.1 to NX3004, .1.3.6.1.4.1.43427.1.5.1 to NX3005, .1.3.6.1.4.1.43427.1.1.1 to

NX3010, 1.3.6.1.4.1.43427.1.2.1 to NX3020 and.1.3.6.1.4.1 .43427.1.3.1 to NX3030.

For example, if the user wants to monitor the internal temperature of a CPU NX3030, the
corresponding OID in this case will be .1.3.6.1.4.1.43427.1.3.1.5.3

(iso.org.dod.internet.private.enterprise.AltusSA.Nexto

.NX3030.NextoDiags.Thermometer.Temperature).

Groups Diagnostic Description

Target

CPUModel NX30XX

CPUVersion Firmware Version

BootloadVersion Bootloader Version

AuxProcVersion
1
 Aux Proc Version

Hardware

AuxProcFailure
1
 Failure between Aux Proc and Main Proc

RTCFailure
The main Proc is not able to communicate with the

RTC (CPU clock)

http://www.altus.com.br/site_en/

4. Configuration

 188

Groups Diagnostic Description

ThermometerFailure
Communication failure between Thermometer and

Main Proc

LCDFailure
1

Communication failure between the LCD and Main
Proc

RetainInfo

CPUInitStatus

Initialization State of CPU:

01: Hot Start
02: Warm Start
03: Cold Start

note: These variables are reset in all energization.

CPUColdStartCounter

Cold Start Counter:

It will only be increased due to hot removal of the
CPU of the bus and not due to the Reset Cold

command the of MasterTool IEC XE (0 to 65535)

CPUWarmStartCounter

Warm Start Counter:

It will only be incremented during energization
sequence of the system and not due to the Reset

Warm command of MasterTool IEC XE (0 to 65535)

CPUHotStartCounter
1

Counter of disorders smaller than the time of power

failure to support the CPU (0 to 65535)

RTSResetCounter
Reset counter made by the RTS (Runtime System)

(0 to 65535)

Reset

BrownOut
CPU reboot due to a power supply failure in the last
initialization

Watchdog
CPU reboot due to watchdog active in the last

initialization

Thermometer

UnderTemperatureAlarm
Alarm generated due to internal temperature be in 0°

C or below

OverTemperatureAlarm
Alarm generated due to internal temperature be in
85° C or above

Temperature Internal Temperature

Ethernet

NET 1

ModbusRTUEthClient1 Modbus RTU via TCP Client

ModbusEthClint1 Modbus TCP Client

ModbusRTUEthServer1 Modbus RTU via TCP Server

ModbusEthServer1 Modbus TCP Server

NET 2

ModbusRTUEthClient2
1
 Modbus RTU via TCP Client

ModbusEthClint2
1
 Modbus TCP Client

ModbusRTEthServer2
1
 Modbus RTU via TCP Server

ModbusEthServer2
1
 Modbus TCP Server

Application
CPUState

Reports the operating status of the CPU:

01: All user applications are in Start Mode
03: All user applications are in Stop Mode

ForcedIOs There are one or more forced IO points

SNTP

ServiceEnable SNTP service enabled

ActiveTimeServer

Indicates which server is active:

00: No server active
01: Primary server active
02: Secondary server active

PrimaryServerDownCount
Counter of how many times primary server was

unavailable (0 to 65535)

SecondaryServerDownCount
Counter of how many times secondary server was

unavailable (0 to 65535)

RTCTimeUpdatedCount
Counter of times the RTC has been updated by the
NTP service (0-4294967295)

LastUpdateSuccessful

Indicates status of last update:
00: Not updated

01: Last update failed
02: Last update had success

LastUpdateTimeServer

Indicates which server was used in the last update:
00: Any update

01: Primary Server
02: Secondary Server

LastUpdateTimeDayOfMonth Day of last RTC update

4. Configuration

 189

Groups Diagnostic Description

LastUpdateTimeMonth Month of last RTC update

LastUpdateTimeYear Year of last RTC update

LastUpdateTimeHours Hour of last RTC update

LastUpdateTimeMinutes Minute of last RTC update

LastUpdateTimeSeconds Seconds of last RTC update

LastUpdateTimeMilliSeconds Milliseconds of last RTC update

SOE

SOE1

ConnectionStatus1
1
 Connection status of client 01

OverflowStatus1
1

Client 01 event queue status:

FALSE – OK

TRUE – Queue limit exceeded

EventsCounter1
1
 Client 01 event counter on queue

SOE2

ConnectionStatus2
1
 Connection status of client 02

OverflowStatus2
1

Client 02 event queue status:

FALSE – OK

TRUE – Queue limit exceeded

EventsCounter2
1
 Client 02 event counter on queue

Table 4-127. Diagnostics via SNMP

(1)
These diagnostics was not available at the CPUs NX3004 and NX3005.

ATTENTION:

Items Ethernet NET2, SNTP and SOE are available only for CPUs NX3020 and NX3030

Configuration

SNMP settings can be changed through the web page, in the CPU Management tab in the SNMP
menu. To access the settings, you must first log in, as shown in Figure 4-96.

Figure 4-96. SNMP Login screen

After successful login, the current state of the service (enabled or disabled) as well as the user
information SNMPv3 and communities for SNMPv1 / v2c can be viewed.

4. Configuration

 190

The user can enable or disable the service via a checkbox at the top of the screen.

It’s also possible to change the SNMPv3 information by clicking the Change button just below the

user information. Will open a form where you must complete the old username and password, and
the new username and password. The other user information SNMPv3 cannot be changed.

To change the data of SNMPv1/v2c communities, the process is similar, just click the Change button

below the information community. A new screen will open where the new data to the rocommunity
fields and rwcommunity will be inserted. If you fail any of the fields blank, their community will be

disabled. That way, if the user leaves the two fields blank, access to the SNMP agent will only be

possible through SNMPv3.

If the user wants to return to the default settings, it must be manually reconfigure the same according
to the User and SNMP Communities section. Therefore, all current SNMP configurations will be

kept in the firmware update process. These options can be visualized in Figure 4-97.

Figure 4-97. SNMP status configuration screen

ATTENTION:

If the displayed screens are different from displaying in the browser, a browser cache cleanup is

necessary.

ATTENTION:

The user and password to login on the website of SNMP settings and to access the agent via SNMP

protocol are equal.

User and SNMP Communities

To access the SNMPv1 / v2c of the Nexto Series CPUs, there are two communities, according to

Table 4-128.

4. Configuration

 191

Communities Default String Type

rocommunity Public Only read

rwcommunity Private Read and Write

Table 4-128. SNMP v1/v2c Default Communities info

It’s possible to access SNMP v3 using default user, see table below:

User Type
Authentication

Protocol
Authentication

Password
Private

Protocol
Private

Password

administrator rwuser MD5 Administrator - -

Table 4-129. SNMP v3 User info

For all settings of communities, user and password, some limits must be followed, as the Table

4-130:

Configurable item Minimum Size Max Size Allowed Characters

rocommunity - 30 [0-9][a-z][A-Z]@$*_.

rwcommunity - 30 [0-9][a-z][A-Z]@$*_.

V3 User - 30 [0-9][a-z][A-Z]@$*_.

Password v3 8 30 [0-9][a-z][A-Z]@$*_.

Table 4-130. SNMP settings limits

User Management and Access Rights

It provides functions to define users accounts and to configure the access rights to the project and to

the CPU. Using the software MasterTool IEC XE, it’s possible to create and manage users and

groups, setting, different access right levels to the project.

Simultaneously, the Nexto CPUs have a user permissions management system that blocks or allows

certain actions for each user group in the CPU. For more information, consult the MasterTool IEC

XE User Manual MT85000 – MU299609, in the User Management and Access Rights chapter.

5. Initial Programming

 192

5. Initial Programming

The main goal of this chapter is to help in the programming and configuration of Nexto Series CPUs

so that the user will be able to take the first steps before starting a controller programming.

Nexto Series CPU uses the standard IEC 61131-3 for language programming, which are: IL, ST, LD,

SFC and FBD, and besides these, an extra language, CFC. These languages can be separated in text

and graphic. IL and ST are text languages and are similar to Assembly and C, respectively. LD, SFC,

FBD and CFC are graphic languages. LD uses the relay block representation and it is similar to relay
diagrams. SFC uses the sequence diagram representation, allowing an easy way to see the event

sequence. FBD and CFC use a group of function blocks, allowing a clear vision of the functions

executed by each action.

The programming is made through the MasterTool IEC XE (IDE) development interface. The

MasterTool IEC XE allows the use of the six languages in the same project, so the user can apply the

best features offered by each language, resulting in more efficient applications development, for easy

documentation and future maintenance.

For further information regarding programming, see User Manual MasterTool IEC XE - MU299609,

Programming Manual MasterTool IEC XE - MU399609 or IEC 61131-3 standard.

Memory Organization and Access

Nexto Series uses an innovative memory organization and access feature called big-endian, where the
most significant byte is stored first and will always be the smallest address (e.g. %QB0 will always

be more significant than %QB1, as in Table 5-1, where, for CPUNEXTO string, the letter U is byte 0

and the letter O is the byte 7).

Besides this, the memory access must be done carefully as the variables with higher number of bits
(WORD, DWORD, LONG), use as index the most significant byte, in other words, the %QD4 will

always have as most significant byte the %QB4. Therefore it will not be necessary to make calculus

to discover which DWORD correspond to defined bytes. The Table 5-1, shows little and big endian
organization.

MSB Little-endian (Traditional) LSB

BYTE %QB7 %QB6 %QB5 %QB4 %QB3 %QB2 %QB1 %QB0

 C P U N E X T O

WORD %QW3 %QW2 %QW1 %QW0

 CP UN EX TO

DWORD %QD1 %QD0

 CPUN EXTO

LWORD %QL0

 CPUNEXTO

HSB <– Big-endian (NEXTO) –> LSB

BYTE %QB0 %QB1 %QB2 %QB3 %QB4 %QB5 %QB6 %QB7

 C P U N E X T O

WORD %QW0 %QW2 %QW4 %QW6

 CP UN EX TO

DWORD %QD0 %QD4

 CPUN EXTO

LWORD %QL0

 CPUNEXTO

Table 5-1. Example

5. Initial Programming

 193

 SIGNIFICANCE

OVERLAPPING

Bit Byte Word DWord LWord

Byte

Word

DWord

%QX0.7

%QB00

%QW00

%QD00

%QL00

%QW00

%QX0.6

%QX0.5

%QX0.4

%QB00

%QX0.3

%QX0.2

%QX0.1

%QX0.0

%QX1.7

%QB01

%QW01

%QD01

%QX1.6

%QX1.5

HSB %QX1.4

%QB01

%QX1.3

%QX1.2

%QX1.1

%QX1.0

%QD00

%QX2.7

%QB02

%QW02

%QW02

%QD02

%QX2.6

%QX2.5

LSB %QX2.4

%QB02

%QX2.3

%QX2.2

%QX2.1

%QX2.0

%QX3.7

%QB03

%QW03

%QD03

%QX3.6

%QX3.5

%QX3.4

%QB03

%QX3.3

%QX3.2

%QX3.1

%QX3.0

%QX4.7

%QB04

%QW04

%QD04

%QW04

 %QD04

%QX4.6

%QX4.5

%QX4.4

%QB04

%QX4.3

%QX4.2

%QX4.1

%QX4.0

%QX5.7

%QB05

%QW05

%QX5.6

%QX5.5

%QX5.4

%QB05

HSB %QX5.3

%QX5.2

%QX5.1

%QX5.0

%QX6.7

%QB06

%QW6

%QW06

%QX6.6

%QX6.5

%QX6.4

%QB06

LSB %QX6.3

%QX6.2

%QX6.1

%QX6.0

%QX7.7

%QB07

%QX7.6

%QX7.5

%QX7.4

%QB07

%QX7.3

%QX7.2

%QX7.1

%QX7.0

Table 5-2. Memory Organization and Access

5. Initial Programming

 194

The Table 5-2 shows the organization and memory access, illustrating the significance of bytes and

the disposition of other variable types, including overlapping.

Project Profiles

A project profile in the MasterTool IEC XE is a group of rules, common features and patterns used in
an industrial automation solution development, a profile which implies in the application

implementation form. With the diversity of application types supported by the Nexto Series Runtime

System, following a profile is a way to simplify the programming complexity. The applications can

be created according the following profiles:

 Single

 Basic

 Normal

 Expert

 Custom

 Machine Profile

For each profile defined for the RTS, MasterTool IEC XE can provide numerous compatible

templates. When the user selects a template as a model in project creation, the new application will

be developed as a specific profile, adopting rules, characteristics and standards defined by the profile
associated with the template. Each project profile defines standard names for the tasks and programs,

which are pre-created by the project templates. The developer is required to follow the nomenclature

strictly for the tasks, but can follow or not the suggested names for the respective programs.

To ensure the project compatibility to a certain profile during the development, two approaches are

used:

 MasterTool IEC XE only allows the creation of projects based on a template, selecting at the

time that profile is chosen.

 During code building, MasterTool IEC XE verify all the rules set for the profile selected in the

project.

The following sections detail the characteristics or standards of each profile, which follow a gradual

complexity slope. Based in these definitions, it’s recommended that the user always use the simplest

profile that meets his application needs, migrating to a more sophisticated profile only when the
corresponding rules are being more barriers to development than didactic simplifications. It is

important to stress that the programming tool allows the profile change from an existent project (see

project update section in the MasterTool IEC XE User Manual – MU299609), but it’s up to the
developer to make any necessary adjustments so that the project becomes compatible with the rules

of the new selected profile.

ATTENTION:

Through the description of the Project profiles some tasks types are mentioned, which are described
in the section ‘Task Configuration’, of the MasterTool IEC XE User Manual – MU299609.

ATTENTION:

When more than one task is used, the I/O access can only be done in the context of the main task,
MainTask. In case that the option Enable I/O Task Update per Task can’t be used, present as of

MasterTool IEC XE version 2.01.

5. Initial Programming

 195

Single

In the Single Project Profile, the application has only one user task, MainTask. This task is

responsible for the execution of a single Program type programming unit called MainPrg. This single
program can call other programming unit, of the Program, Function or Function Block types, but the

whole code will be executed exclusively by the MaisTask.

In this profile, the MainTask will be of the cyclical type (Cyclic) with priority fixed as 13 (thirteen)
and runs exclusively the MainPrg program in a continuous loop. The MainTask is already fully

defined and the developer needs to create the MainPrg program, using any of the languages of the

IEC 61131-3 standard. It is not always possible to convert a program to another language, but it’s

always possible to create a new program, built in a different language, with the same name and
replace it. The MasterTool IEC XE standard option is to use the MasterTool Standard Project

associated with the Single profile, which also include the MainPrg created in the language selected

during the project creation.

This type of application never needs to consider issues as data consistence, resource sharing or

mutual exclusion mechanisms.

Task POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -

Table 5-3. Single Profile Tasks

Basic

In the Basic Project Profile, the application has one user task of the Continuous type called

MainTask, which executes the program in a continuous loop (with no definition of cycle time) with

priority fixed in 13 (thirteen). This task is responsible for the execution of a single programming unit
POU called MainPrg. It’s important to notice that the cycle time may vary according to the quantity

of communication tasks used, as in this mode, the main task is interrupted by communication tasks.

This profile also allows the inclusion of two event tasks with higher priority, that can interrupt
(preempt) the MainTask at any given moment: the task named ExternInterruptTask00 is an event task

of the External type with priority fixed in 02 (two); the task named TimeInterruptTask00 is an event

task of the Cyclic type with priority fixed as 01 (one).

The Basic project template model includes three tasks already completely defined as presented in
Table 5-4. The developer need only to create the associated programs.

Tasks POU Priority Type Interval Event

MainTask MainPrg 13 Continuous - -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0

TimeInterruptTask00 TimeInterruptTask00 01 Cyclic 20 ms -

Table 5-4. Basic Profile Tasks

Normal

In the Normal Project Profile, the application has one user task of the Cyclic type, called MainTask.

This task is responsible for the execution of a single programming unit POU called MainPrg. This

program and this task are similar to the only task and only program of the Single profile, but here the
application can integrate additional user tasks. These other tasks, named CyclicTask00 and

CyclicTask01, each one responsible for the exclusive execution of it respective CyclicPrg<nn>

program. The CyclicTask<nn> tasks are always of the cyclic type and with priority fixed in 13
(thirteen), same priority as MainTask. These two types form a group called basic tasks, which

associated programs can call other POUs of the Program, Function and Function Block types.

5. Initial Programming

 196

Furthermore, this profile can include event tasks with higher priority than the basic tasks, which can

interrupt (preempt) these tasks execution at any time.

The task called ExternInterruptTask00 is an event task of the External type which execution is
triggered by some external event, such as the variation of a control signal on a serial port or the

variation of a digital input on the NEXTO bus. This task priority is fixed in 02 (two), being

responsible exclusively for the execution of the ExternInterruptPrg00 program. The task called
TimeInterruptTask00 is an event task of the Cyclic type with a priority fixed as 01 (one), being

responsible for the execution exclusively of TimeInterruptPrg00 program.

In the Normal project model, there are five tasks, and its POUs, already fully defines as shown in

Table 5-5. The developer needs only to implement the programs content, opting, on the wizard, for
any of the languages in IEC 61131-3 standard. The tasks interval and trigger events can be

configured by the developer and the unnecessary tasks can be eliminated.

Tasks POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -

CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -

CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0

TimeInterruptTask00 TimeInterruptTask00 01 Cyclic 20 ms -

Table 5-5. Normal Profile Tasks

Expert

The Expert Project Profile includes the same basic tasks, CyclicTask<nn>, ExternInterruptTask00

and TimeInterruptTask00 with the same priorities (13, 02 and 01 respectively), but it’s an expansion
from the previous ones, due to accept multiple events tasks. That is, the application can include

various ExternInterruptTask<nn> or TimeInterruptTask<nn> tasks that execute the

ExternInterruptPrg<nn> and TimeInterruptPrg<nn> programs. The additional event tasks priorities
can be freely selected from 08 to 12. In this profile, besides the standard programs, each task can

execute additional programs.

In this project profile, the application may also include the user task FreeTask of the Freewheeling

type with priority 31, responsible for the FreePrg program execution. As this task is low priority it
can be interrupted by all others so it can execute codes that might be blocked.

There are eight tasks already fully defined, as shown in Table 5-6, as well as their associated

programs in the chosen language. Intervals and trigger events of any task, as well as the priorities of
the event tasks can be configured by the user.

When developing the application using Experienced project's profile, a special care is needed with

the event tasks scaling. If there is information and resource sharing between these tasks or between
them and the basic tasks, it is strongly recommended to adopt strategies to ensure data consistency.

Tasks POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -

CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -

CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 ExternInterruptPrg00 02 External IO_EVT_0

TimeInterruptTask00 TimeInterruptTask00 01 Cyclic 20 ms -

ExternInterruptTask01 ExternInterruptPrg01 11 External - IO_EVT_1

TimeInterruptTask01 TimeInterruptPrg01 09 Cyclic 30 ms -

FreeTask FreePrg 31 Continuous - -

Table 5-6. Expert Profile Tasks

5. Initial Programming

 197

Custom

The Custom project profile allows the developer to explore all the potential of the Runtime System

implemented in the Nexto Series central processing units. No functionality is disabled; no priority,
task and programs association or nomenclature are imposed. The only exception is for MainTask,

which must always exist with this name in this Profile.

Beyond the real time tasks, with priority between 00 and 15, which are scheduled by priority, in this
profile it is also possible to define tasks with lower priorities in the range 16 to 31. In this range, it’s

used the Completely Fair Scheduler (time sharing), which is necessary to run codes that can be

locked (for example, use of sockets).

The developer is free to partially follow or not the organization defined in other project profiles,
according to the characteristics of the application. On the other hand, the Custom model associated

with this profile needs no pre-defining elements such as task, program or parameter, leaving the

developer to create all the elements that make up the application. However, the user can generate the
same elements available for the Expert profile.

Tasks POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -

CyclicTask00 CyclicPrg00 13 Cyclic 200 ms -

CyclicTask01 CyclicPrg01 13 Cyclic 500 ms -

ExternInterruptTask00 ExternInterruptPrg00 02 External - IO_EVT_0

TimeInterruptTask00 TimeInterruptTask00 01 Cyclic 20 ms -

ExternInterruptTask01 ExternInterruptPrg01 11 External - IO_EVT_1

TimeInterruptTask01 TimeInterruptPrg01 09 Cyclic 30 ms -

FreeTask FreePrg 31 Continuous - -

Table 5-7. Custom Profile Tasks

Machine Profile

In the Machine Profile, by default, the application has a user task of the Cyclic type called MainTask.

This task is responsible for implementing a single Program type POU called MainPrg. This program

can call other programming units of the Program, Function or Function Block types, but any user
code will run exclusively by MainTask task..

This profile is characterized by allowing shorter intervals in the MainTask, allowing faster execution

of user code. This optimization is possible because MainTask also performs the processing of the
bus. This way, different from other profiles, the machine profile requires no context switch for the

bus treatment, which reduces the overall processing time.

This profile may further include an interruption task, called TimeInterruptTask00, with a higher

priority than the MainTask, and hence, can interrupt its execution at any time.

Task POU Priority Type Interval Event

MainTask MainPrg 13 Cyclic 20 ms -

TimeInterruptTask00 TimeInterruptTask00 01 Cyclic 4 ms -

Table 5-8. Machine Profile Tasks

5. Initial Programming

 198

General Table

 Project Profiles

Verifications Single Machine Basic Normal Expert Custom

Total tasks Quantity 01 02 [01..03] [01..32] [01..32] [01..32]

Programs

per Tasks

Quantity 01 01 01 <n> <n>

Main Task Name

Type Cyclic Cyclic Continuous Cyclic Cyclic <n>

Priority 13 13 13 13 13 <n>

Quantity 01 01 01 01 01 01

Time

Interrupt
Task

Name <n>

Type Cyclic Cyclic Cyclic Cyclic Cyclic

Priority 01 01 01 01 or [08..12] <n>

Quantity [00..01] [00..01] [00..01] [00..31] [00..31]

Extern

Interrupt
Task

Name <n>

Type External External External External

Priority 02 02 02 or [08..12] <n>

Quantity [00..01] [00..01] [00..31] [00..31]

Cyclic Task Name CyclicTask<n

n>

CyclicTask<n

n>

<n>

Type Cyclic Cyclic Cyclic

Priority 13 13 <n>

Quantity [00..31] [00..31] [00..31]

Free Task Name FreeTask <n>

Type Freewheeling Freewheeling

Priority 31 <n>

Quantity [00..01] [00..01]

Event Task Name <n>

Type Event

Priority <n>

Quantity [00..31]

Table 5-9. General ‘Profile x Tasks’ Table

ATTENTION:

The suggested POU names associated with the tasks are not consisted. They can be changed, as long

as they are also changed in the tasks configurations.

Maximum Number of Tasks

The maximum number of tasks the user can create is only defined for the Custom profile, the only

one which has this permission. The others already have their tasks created and configured.

Table 5-10 describes the maximum IEC task quantity per CPU and project profile, where the protocol

instances are also considered communication tasks by the CPU.

5. Initial Programming

 199

 Task Type
NX3004/NX3005 NX3010 NX3020 NX3030

S B N E P M E C M S B N E C M S B N E C M

Configuration Task (Task WHSB) Cyclic 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0

User Tasks

Cyclic 1 1 15 15 15 2 1 1 15 15 15 2 1 1 23 23 23 2 1 1 31 31 31 2

Triggered by Event 0 0 0 0 15 0 0 0 0 0 15 0 0 0 0 0 23 0 0 0 0 0 31 0

Triggered by External

Event

0 1 1 14 15 0
0 1 1 14 15 0 0 1 1 22 23 0 0 1 0 30 31 0

Freewheeling 0 1 0 1 15 0 0 1 0 1 15 0 0 1 0 1 23 0 0 1 0 1 31 0

Triggered by State 0 0 0 0 15 0 0 0 0 0 15 0 0 0 0 0 23 0 0 0 0 0 31 0

NETs – Client or Server Instances Cyclic 4 4 8 16

COM (n) – Master or Slave Instances Cyclic 1 1 1 1

TOTAL 16 16 24 32

Table 5-10. IEC Tasks Maximum Number

Notes:

Profile Legend: The S, B, N, E, C and M letters correspond to the Single, Basic, Normal, Expert, Custom and Machine profiles respectively.

Values: The number defined for each task type represents the maximum values allowed.

Task WHSB: The WHSB is a system task that must be considered so the total value is not surpassed.

NETs – Client or Server Instances: The maximum value defined considers all system Ethernet interfaces, including the expansion modules when
these are applied. E.g. MODBUS protocol instances.

COM (n) – Master or Slave Instances: The "n" represents the number of the serial interface. Even with expansion modules, the table value will be

the maximum per interface. E.g. MODBUS protocol instances.

Total: The total value does not represent the sum of all profile tasks, but the maximum value allowed per CPU. Therefore, the user can create

several task types, while the established numbers for each one and the total value are not surpassed.

5. Initial Programming

 200

CPU Configuration

The Nexto CPU configuration is based on the action of structuring the diagnostics area, the retentive

and persistent memory area and hot swap mode, among other parameters.

The user must double-click on the Nexto CPU, in the device tree, as shown on Figure 5-1, and
configure the field as described in the CPU Configuration.

Figure 5-1. CPU Configuration

Besides that, for the communication between the CPU and the MasterTool IEC XE to be possible, the

Ethernet NET 1interface must be configured, as described in the NET 1. Double-clicking on the CPU
NET 1 icon, in the devices tree, a new tab will appear for the configuration of the communication

network where the module is connected.

Figure 5-2. Configuring the CPU Communication Port

5. Initial Programming

 201

In case the CPU with the configured IP is not found in the network or the active CPU has a different

IP, a message will appear on the screen during the Login, requesting to the user the possibility of

changing the previous IP by the configured (Yes option) or No and quit sending the project.

Figure 5-3. IP Configuration Warning

Libraries

There are several programming tool resources which are available through libraries. Therefore, these

libraries must be inserted in the project so its utilization becomes possible. The insertion procedure
and more information about available libraries must be found in the MasterTool Programming

Manual – MP399609.

Inserting a Protocol Instance

The Nexto Series CPUs, as described in the General Features chapter, offer protocols as the

MODBUS. The desired protocol instance must be added and configured in the communication
interface as shown in the Protocols Configuration chapter.

Two cases of MODBUS protocol insertion are described below: one in the serial interface and the

other in the Ethernet interface.

5. Initial Programming

 202

MODBUS RTU

The first step for the MODBUS RTU configuring, in slave mode, is to include the instance in the

desired COM (COM 1 in this case) by clicking with the right button on the COM and select “Add
Device...”, as shown on Figure 5-4:

Figure 5-4. Adding an Instance

After that, the available protocols for the user will appear on the screen. Define the protocol

configuration mode selecting “MODBUS Symbol RTU Slave”, for symbolic mapping setting or

“MODBUS RTU Slave”, for direct addressing (%Q) and click on Add Device, as depicted on Figure
5-5:

5. Initial Programming

 203

Figure 5-5. Selecting the Protocol

MODBUS Ethernet

The first step to configure the MODBUS Ethernet, in client mode, is to include the instance in the

desired NET (in this case, NET 1, as the CPU NX3010 has only one Ethernet interface). Click on the
NET with the mouse right button and select “Add Device...”, as shown on Figure 5-6:

5. Initial Programming

 204

Figure 5-6. Adding the Instance

After that, the available protocols for the user will appear on the screen. Define the protocol

configuration mode selecting “MODBUS Symbol Client”, for symbolic mapping setting or
“MODBUS Client”, for direct addressing (%Q) and click on Add Device, as depicted on Figure 5-7:

5. Initial Programming

 205

Figure 5-7. Selecting the Protocol

Finding the Network

As there is the possibility of more CPUs being connected to the network, the user must find all

communication units and select the desired one.

Initially, the option Device must be accessed, in the device tree, double-clicking on it. In the tab

“Communications Settings”, select the Gateway and click on “Scan network”. On the

"Communication Settings" tab select the Gateway or in case there is no Gateway or the user wants to

add a new gateway, click the "Add Gateway", setting your IP in the window that opens. For mapping
devices present in the network, click on "Scan Network ".

Then, the user must wait until the MasterTool IEC XE software searches and show the available

CPUs in the network.

5. Initial Programming

 206

Figure 5-8. Finding the CPU

Following, the desired CPU must be selected and the option “Set active path” clicked, to activate the

CPU and to inform the configuration software the CPU should communicate and send the project.

Figure 5-9. Activating the CPU

5. Initial Programming

 207

If necessary, the user can change the default name of the device that is displayed. For that, you must

click the right mouse button on the desired device and select "Change Node Name". After a name

change, the device will not return to the default name under any circumstances.

Login

After the application has been compiled and the errors found corrected, the project must be sent to

the CPU. For that to be possible, the operation Login in the MasterTool IEC XE software must be

executed. This operation may take a few seconds, depending on the size of the generated file. To

execute the Login, go to Online menu and click on the option “Login”, as shown on Figure 5-10.

Figure 5-10. Sending the Project to the CPU

After the command execution, some user interface messages may appear, which are presented due to

differences between an old project and the new project been sent, or simply because there was a

variation in some variable.

Figure 5-11 shows the message the MasterTool IEC XE presents in case the new project, which is

being sent, is different from the project already existent inside the CPU. The available options are the

following:

 Login with online change: execute the login and send the new project without stopping the

current CPU application (see Run Mode item), updating the changes when a new cycle is
executed

 Login with download: execute the login and send the new project with the CPU stopped (see

Stop Mode). When the application is initiated, the update will have been done already

 Login without any change: executes the login without sending the new project

ATTENTION:

Before version 2.01 of MasterTool IEC XE, when the Login with online change was executed, the
application was not saved in the program memory. It was necessary to run the "Create Boot

Application" in the Communication menu without logging out, for the application to be recorded in

program memory. From version 2.01 this operation came to be carried out automatically without the
need to run the command.

5. Initial Programming

 208

Figure 5-11. CPU Project Updating

ATTENTION:
In the online changes is not permitted to associate symbolic variables mapping from a global

variable list (GVL) and use these variables in another global variable list (GVL).

Figure 5-12 shows a message the MasterTool IEC XE shows when only changes in the application

variables were done; turning impossible the new project sending and updating on a CPU new cycle,
which is in run mode (see Run Mode). Therefore, the MasterTool IEC XE requests whether the login

must be executed as download and the CPU stopped (see Stop Mode) or the operation must be

canceled.

PS.: The button “Details...” presents the changes made in the application.

Figure 5-12. Variable Changes

At the first time an application is sent to the CPU, the message shown on Figure 5-13 will appear on
the MasterTool IEC XE screen.

Figure 5-13. First Application Sending

Run Mode

Right after the project has been sent to the CPU, the application will not be immediately executed
(only if an online – online change transmission were made). For that to happen, the command “Start”

must be selected. This function allows the user to control the execution of the application sent to the

5. Initial Programming

 209

CPU. Besides, it allows initial values to be pre-configured, in order to turn possible the CPU

updating on the first cycle.

To select such functionality, the option “Start”, from the Debug menu, must be clicked, as shown on
Figure 5-14.

Figure 5-14. Starting the Application

Figure 5-15 shows the application in execution. In case the POU tab is selected, the created variables

are listed on a monitoring window, in which the values can be forced and visualized by the user. In

case the variables are forced through the F7 command on the keyboard, the CPU will indicate this

condition on the graphic display. For further details see Graphic Display chapter.

Figure 5-15. Program Being Executed

5. Initial Programming

 210

In case the CPU is initialized with an application already internally stored, it automatically goes to

Run Mode, without the need for a MasterTool IEC XE command.

Stop Mode

For CPU execution interruption, without losing the connection with the MasterTool IEC XE
software, the user must select the “Stop” option, available at the menu Debug, as shown on Figure

5-16.

Figure 5-16. Stopping the Application

In case the CPU is initialized without the stored application, it automatically goes to Stop Mode, as it

happens when a software exception occurs.

Writing and Forcing Variables

After Logging into a PLC, the user can write or force values to a variable of the project.

The writing command (Ctrl +F7) writes a value into a variable and this value could be overwritten by

instructions executed in the application.

Moreover, the forced writing command (F7) writes a value into a variable without allowing this value

to be changed until the forced variables be released.

It is important to highlight that, when used the MODBUS RTU Slave and the MODBUS Ethernet

Server, and the “Read-only” option from the configured relations is not selected, the forced writing

command (F7) must be done over the available variables in the monitoring window as the writing
command (Ctrl + F7) leaves the variables to be overwritten when new readings are done.

ATTENTION:

The variables forcing can be done in the CPU only in the Online mode.

Diagnostic variables cannot be forced, only written, because diagnostics are provided by the CPU
and must be overwritten by it.

When a forced writing is done into a redundant variable of the Active PLC, the MainTask execution

time will be impacted, in both Active and Stand-by PLC. This occurs because the two half-clusters

will exchange in each cycle information about the forced variables. Therefore, when forcing
variables in a redundant system, the user should consider the time added to the task execution time.

5. Initial Programming

 211

The Table 5-11 exemplifies the medium execution time added to the MainTask with a number of

forced variables:

 Active PLC Stand-by PLC

Execution Time 50 ms 100 ms 200 ms 50 ms 100 ms 200 ms

Increase with 10 forcings 2.4 % 2.2 % 1.7 % 4.0 % 3.4 % 2.0 %

Increase with 50 forcings 12.0 % 9.2 % 6.0 % 18.0 % 12.0 % 8.0 %

Increase with 128 forcings 26.0 % 21.0 % 16.0 % 56.0 % 34.0 % 22.5 %

Table 5-11. The Influence of the Variables Forcing in a Redundant PLC

ATTENTION:

When a CPU is with forced variables and it is de-energized, the variables will lose the forcing in the

next initialization.

The limit of forcing for the Nexto CPUs is 128 variables, regardless of model or configuration of
CPU used.

Logout

In case the user option is to finalize the communication with the CPU, the command “Logout” must

be used, placed in the Online menu, as shown on Figure 5-17.

Figure 5-17. Interrupting the Communication with the CPU

Project Upload

Nexto Series CPUs allow the project storing in the product memory, which can be uploaded and
reused through the MasterTool IEC XE software.

To store a project in the product memory, the CPU must be connected (Login) and the option to send

the source download implicitly at program download must be selected.

To upload the project previously stored, the options shown on Figure 5-18 must be selected.

5. Initial Programming

 212

Figure 5-18. Project Upload Option

After, the desired CPU has to be selected and the OK button clicked as shown on Figure 5-19.

To ensure that the project loaded in the CPU is identical and can be accessed in other workstations,
consult the chapter Projects Download/Login Method without Project Differences at the MasterTool

IEC XE User Manual MT8500 - MU299609.

Figure 5-19. Selecting the CPU

ATTENTION:

The memory size area to store a project in the Nexto CPUs is defined on Table 2-5.

5. Initial Programming

 213

ATTENTION:

The upload recovers the last project stored in the controller as described in the previous paragraphs.

In case only the download for execution of a specific applicative occurs, it will not be possible to be
recovered through upload.

CPU Operating States

Run

When a CPU is in Run mode it indicates that all application tasks are in execution.

Stop

When a CPU is in Stop mode it indicates that the application tasks are stopped. The variable values
in the tasks are kept with the current value and output variables assume defined values by the user.

When a CPU switches for the Stop mode from the submitting of an application, the variables in the

application tasks will be lost with the exception of the persistent type variables. The output variables
will assume the defined value by the user and then the outputs value will switch for the safe state. As

the new application is loaded, the output variables will assume again the defined value by the user.

Breakpoint

When a debugging mark is reached in a task, it is interrupted. All the active tasks in the application

will not be interrupted, they will continue their execution. In this mode it is possible to go through a

program in the Online mode. A step by step can be executed and the debugging interruptions

positions depend on the editor.

For further information about the use breakpoints, please consult the MasterTool IEC XE Utilization

Manual - MU299609.

Exception

When a CPU is in Exception it indicates that some improper operation occurred in one of the

application active tasks. The task which caused the Exception will be suspended and the other tasks

will pass for the Stop mode. It is only possible to take off the tasks from this state and set them in
execution again after a new CPU start condition. Therefore, only with a Reset Warm, Reset Cold,

Reset Origin or a CPU restart puts the application again in Run mode.

Reset Warm

This command puts the CPU in Stop mode and starts all the application tasks variables, except the
persistent and retentive type variables. The variables started with a specific value will assume exactly

this value, the other variables will assume the start standard value.

Reset Cold

This command puts the CPU in Stop mode and starts all the application tasks variables, except the

persistent type variables. The variables started with a specific value will assume exactly this value,

the other variables will assume the start standard value (zero).

Reset Origin

This command removes all the application tasks variables, including the persistent type variables and

deletes the CPU application.

Notes:

Reset: When a Reset is executed, the breakpoints defined in the application are disabled.

Command: In order to execute a command from any type of Reset, is necessary to be in Online

mode on CPU.

6. Redundancy with NX3030 CPU

 214

6. Redundancy with NX3030 CPU

Introduction

This chapter describes the Nexto Series CPUs redundancy which can only be used with the NX3030

CPU.

Nexto’ s redundancy is of the hot-standby type, thus, the controllers are doubled. One controller is
normally in active state and controlling a process, while the other is normally in stand-by state,

keeping the synchronism with the active controller. In case of a failure in the active controller

damaging its process control, the stand-by controller switches automatically to Active, within a very
short time, in order not to disturb the process and cause any discontinuities in its outputs.

The hot-standby redundancy is a method used to increase failure tolerance and, consequently,

increase the availability of automation systems. The basic idea is to ensure that no simple failure in
duplicated components causes the process control interruption.

The hot-standby redundancy is applied on:

 Oil exploration platforms;

 Energy generation and distribution plants;

 Security interlock (Instrumented Security Systems);

 Continuous processes such as chemical plants, oil refinery, paper production, etc.

In the Nexto Series CPUs hot-standby redundancy, as it has already been described, the controllers

are doubled. Besides, the field buses (PROFIBUS-DP) can also, optionally, be doubled, as well as the
Ethernet supervisory networks and the Ethernet HSDN (High Speed Deterministic Network) control

networks. By choosing the networks duplication, the availability becomes even higher.

The Nexto Series CPUs hot-standby redundancy is not applied to I/O modules. In case the I/O
module redundancy is desired, it can be treated by the user in the application level. For instance, the

user can duplicate or even triplicate an analog input module and create a vote scheme to define which

input will be considered in an application specific time.

Figure 6-1 shows a typical example of redundant architecture using the NX3030 CPU.

The redundant CPU central part is formed by two identical racks, called PLCA and PLCB, and a

redundancy control panel (PX2612). In the redundancy context, each rack (PLCA or PLCB) is called

half-cluster, while the group formed by these two racks is called cluster.

In this example, a PROFIBUS network, Ethernet supervision network and Ethernet HSDN control

network duplication can also be observed.

6. Redundancy with NX3030 CPU

 215

Figure 6-1. Example of redundant architecture with NX3030 CPU

PLCA
(half-cluster)

cluster
de CPs

N
X

8
0
0

0

N
X

3
0
3

0

N
X

4
0
1

0

Ethernet A

Ethernet B

SCADAs
MasterTool

PO5063V5 Ponto Series I/O modules

Remote Ponto Series I/O with
PROFIBUS Redundant

Ethernet HSDN A

Ethernet HSDN B

PX2612

Non-redundant Ethernet

N

X
8
0

0
0

N

X
3
0

3
0

N

X
4
0

1
0

PROFIBUS 1 A

PROFIBUS 1 B

PLCB
(half-cluster)

AL-2433
Non-redundant PROFIBUS network via AL-2433

Synchonism channel NETA

Synchonism channel NETB

Other HSDN
CPUs

(normally
redundants)

Other CPUs
(redundants

or not)

N
X

5
0
0

1

N
X

5
0
0

1

N
X

5
0
0

0

N
X

5
0
0

0

N
X

5
0
0

0

N

X
5
0

0
1

N

X
5
0

0
1

N

X
5
0

0
0

N

X
5
0

0
0

N

X
5
0

0
0

PO5063V5

PO5063V5 Ponto Series I/O modules PO5063V5

Non-redundant PROFIBUS slaves

6. Redundancy with NX3030 CPU

 216

Technical Description and Configuration

Minimum Configuration of a Redundant CPU (Not Using PX2612 Panel)

A redundant CPU is composed, at least, by:

 Two identical half-clusters

Each half-cluster consists of at least the following modules:

 The rack itself where the modules are inserted, which can be one of the following:

o NX9000, with 8 positions

o NX9001, with 12 positions

o NX9002, with 16 positions

o NX9003, with 24 positions

 The power supply NX8000, at rack positions 0 and 1;

 The NX3030 CPU, at rack positions 2 and 3;

 The module NX4010, at rack positions 4 and 5.

Figure 6-2 shows an example of a redundant CPU minimum configuration, using the smallest rack

(NX9001, with 12 positions). In this case, it can be observer that the three modules inserted in the

rack have double width (occupy two rack positions).

Figure 6-2. Minimum configuration of a redundant CPU in rack NX9001

Typical Configurations of a Redundant CPU

A minimum configuration, as the one shown on Figure 6-2, may already work as “redundant

processing unit”. It would be possible to use the serial and Ethernet communication channels from
NX3030 CPU, for instance, for MODBUS TCP communication with a SCADA system, and

MODBUS RTU and/or MODBUS TCP communication with smart field devices or MODBUS

remote I/O systems.

In typical configurations, however, additional modules are inserted in the PLCA and PLCB half-
clusters, for instance, to deliver a remote PROFIBUS I/O and Ethernet additional channels.

Among the additional modules which, optionally, may be inserted in the half-clusters, are the

following:

 PROFIBUS Masters NX5001

 0 1 2 3 4 5 6 7 8 9 10 11

cluster

N
X
8
0

0
0

N
X
3
0

3
0

N
X
4
0

1
0

Synchonism channel NETA (AL-2319)

Synchonism channel NETB (AL-2319)

 0 1 2 3 4 5 6 7 8 9 10 11

N
X
8
0

0
0

N
X
3
0

3
0

N
X
4
0

1
0

rack NX9001 rack NX9001

half-cluster PLCA half-cluster PLCB

6. Redundancy with NX3030 CPU

 217

 Ethernet Interfaces NX5000

In case is necessary, bigger racks can be used, as the NX9002 (16 positions) and NX9003 (24

positions). It must be observed that all the listed modules, so far in this chapter, have double width

(occupy two positions).

Additionally, it’s also possible to use the PX2612 panel, which allows the execution of some

redundant state machine transitions that, otherwise, wouldn’t be possible, in addition to the automatic

half-clusters shutdown in failure situations.

NX5001 Modules Addition for PROFIBUS Networks

A redundant PLC is up to until four NX5001 modules for PROFIBUS networks usage. Each network

can be single or redundant. In case the PROFIBUS “n” (being “n” a number between 1 and 4) be

redundant, the two networks that belongs to this are named PROFIBUS “n” A and PROFIBUS “n”
B. In case the PROFIBUS “n” be single, the network that belongs to it will be named PROFIBUS “n”

A.

To create a redundant PROFIBUS network, must be inserted two NX5001 modules in each half-
cluster. To create a simple PROFIBUS network, simply insert a NX5001 module in each half-cluster.

Thus, it can be configured up to four simple networks, or two redundant networks, or a redundant and

two simple. In other cases, fewer than four NX5001 modules will be needed in each half-cluster.

More information about PROFIBUS networks is provided in the PROFIBUS Network Configuration
section.

In Figure 6-1, there is only one PROFIBUS network (PROFIBUS 1), and the same is redundant

(PROFIBUS 1 A and 1 B PROFIBUS). In this example, therefore, were inserted two NX5001
modules in each half-cluster.

NX5000 Modules Addition for Ethernet Networks

It’s possible to insert up to six NX5000 modules in each half-cluster, delivering six additional
Ethernet channels, besides the two Ethernet channels already existent in the NX3030 CPU.

The Ethernet channels can be used in an individual way, or organized in NIC Teaming pairs, which

are used to deliver redundant Ethernet channels, and are described, with more details, in the

Redundant Ethernet Networks with NIC Teaming section.

A typical application for the NX5000 module can be the construction of a redundant HSDN (High

Speed Deterministic Network), for the communication between several redundant CPUs. Through

this network, many redundant CPUs can exchange messages in a totally segregated network, in order
to guarantee determinism and a fast communication. Furthermore, configuring this network as

redundant with NIC Teaming pairs, an excellent availability may be reached. In order to build such

network (redundant HSDN), two NX5000 modules must be inserted in each half-cluster. Figure 6-1
shows a redundant HSDN example using two NX5000 modules in each half-cluster.

Applications where input and output modules are connected to Ethernet networks may require extra

interface modules NX5000 to connect to these networks. In these cases, the network that connects the

modules of inputs and outputs can be a simple or redundant network. Furthermore, the interfaces can
be configured with the option of generating life failure. In this case, a network failure will cause a

switch-over.

Figure 6-1 also shows an example with a NX5000 module used in the isolated form (without NIC
Teaming redundancy), inserted at the right side from the other modules in each rack.

NX4010 Module

The NX4010 model, as shows Figure 6-3, was conceived in order to provide the interconnection

between the two PLCA and PLCB half-clusters, and also to connect these half-clusters to the
redundancy control panel PX2612. For further information regarding this module connections, see

Interconnections between Half-Clusters and the Redundancy Control Panel PX2612.

6. Redundancy with NX3030 CPU

 218

Figure 6-3. NX4010 Module

NX4010 Features

Its main features are:

 Data and application synchronization between two half-clusters;

 Redundant communication interface between two half-clusters;

 Automatic switchover (active half-cluster change) in case of NX4010 and CPU communication

time out;

 Possibility to switch off the other half-cluster;

 One Touch Diag TM;

 Electronic Tag on Display;

 Display and LEDs for diagnostics indication

Other features (generals, electrical, mechanic and environment) are presented in the NX4010

Redundancy Module Technical Features - CE114900.

Redundancy Control Panel PX2612

The PX2612 control panel is an optional item in a redundant system. It must be used when the

‘redundancy with panel’ option is selected during the project creation using the wizard. Figure 6-4
shows the redundancy control panel, while Figure 6-5 shows the frontal panel with details.

Through the DB9 connector called CONTROL PLC A, the connection with the CONTROL

connector from PLCA NX4010 is made, using the AL-2317/A cable.

Through the DB9 connector called CONTROL PLC B, the connection with the CONTROL
connector from PLCB NX4010 is made, using the AL-2317/B cable.

Furthermore, there’s a connector with 5 male terminals:

 GND: terminal for ground connection;

6. Redundancy with NX3030 CPU

 219

 RL A: 2 terminals connected to a relay NO (normally open) contacts, which can be commanded

by PLCB to switch off PLCA. This relay must be closed by PLCB in order to switch off PLCA;

 RL B: 2 terminals connected to a relay NO (normally open) contacts, which can be commanded

by PLCA to switch off PLCB. This relay must be closed by PLCA in order to switch off PLCB.

A CPU (PLCA or PLCB) can turn off the other CPU (PLCB or PLCA) in some exceptional
situations, using the NO relays in the RLA and RLB connectors. Such situations are described in the

Transition between Redundancy States section

The PX2612 has also 6 buttons for redundancy command and 6 LEDs used for redundancy state
indication. Each CPU reads 3 from these 6 buttons and controls 3 LEDs.

For further information regarding these buttons and LEDs functions, see PX2612 Redundancy

Command Panel Functions section.

Figure 6-4. Redundancy Control Panel PX2612

Figure 6-5. Redundancy Control Panel PX2612 Frontal View

PX2612 Features

The redundancy control panel PX2612 has the following features:

 CONTROL PLC A: connection to the module NX4010 from PLCA

 CONTROL PLC B: connection to the module NX4010 from PLCB

 RL A: relay NA terminals used to switch off PLCA

 RL B: relay NA terminals used to switch off PLCB

 GND: grounding

Other features (generals, electrical, mechanic and environment) are presented in the Redundancy

Control Panel PX2612 Technical Features - CT112500.

6. Redundancy with NX3030 CPU

 220

Interconnections between Half-Clusters and the Redundancy Control Panel PX2612

Figure 6-6 shows how the connections between PLCA, PLCB and PX2612 have to be made,

including the possibility to allow a CPU to switch off the other, which is necessary in exceptional
situations.

Two AL-2319 cables must be used for the synchronism and redundancy channels NETA and NETB.

One of these two cables interconnects the NX4010 NET 1 connector from each CPU (NETA
channel). The other cable interconnects the NX4010 NET 2 connector from each CPU (NETB

channel).

An AL-2317/A cable interconnects the NX4010 CONTROL connector from the PLCA to the

PX2612 CONTROL PLC A.

An AL-2317/B cable interconnects the NX4010 CONTROL connector from the PLCB to the

PX2612 CONTROL PLC B.

Besides this, it’s necessary to build a special power supply circuit in order to allow a CPU to switch
off the other in extreme cases.

For higher reliability, two separate 24V power supplies must be used, one for PLCA supply and other

for PLCB supply.

It can be observed that is necessary to use two external relays from the normally closed type (NC),
with current capacity to feed the NX8000. These relays must be dimensioned for a nominal current

around 2 A, however, a current inrush of around 10 A must be taken into account. Shunt diodes

connected to the NC relays solenoids must be used to protect the PX2612 NO relay contacts

Figure 6-6. Interconnections between PLCA, PLCB and PX2612

...

NET 1 NET 2

NX4010

CONTROL

half-cluster PLCA

NX3030

NX8000

24V 0V

...

NET 1 NET 2

NX4010

CONTROL

half-cluster PLCB

NX3030

NX8000

24V 0V

AL-2319 (NETB)

AL-2319 (NETA)

CONTROL CP A CONTROL CP B

PX2612

RLA GND RLB

24V 0V
PLCA power Supply

AL-2317/A
AL-2317/B

24V 0V

PLCB power Supply

6. Redundancy with NX3030 CPU

 221

General Features

 Redundant CPU General Features

Allowed CPUs NX3030

Redundancy types Hot-standby

Failure tolerances
Tolerates, at least, simple failures in doubled equipment in the

half-clusters. In specific cases, it can tolerate multiple failures.

Half-cluster 5 redundancy

states

- Not-configured: initial state, also considered when the CPU is off

or isn’t executing the MainTask;

- Starting: temporary state assumed after Not-configured, where
some tests will define the next state (Inactive, Active, Stand-by or
back to Not-configured);

- Inactive: state reached after some types of failures or for
programming maintenance;

- Active: controlling the user process;

- Stand-by: ready to switch to Active and control the user process,
in case there’s such demand (e.g. Active CPU failure).

Main failures which cause

switchover between the Active
CPU and the Reserve CPU.

The reserve CPU switches for
the Active and the Active can
go to Inactive or Not-

configured.

- Supplying failure;

- Power supply;

- CPU (stop in the MainTask execution);

- NX4010;

- Failure in both synchronism channels (NETA and NETB) and the
cause isn’t in the Reserve CPU. In this case the Reserve CPU,
besides assuming the Active state, switches the other CPU off;

- Failure of some synchronism channel (NETA and NETB) and the
cause is in the Active CPU;

- Failure in some vital PROFIBUS network.

Commands that cause

switchover between the Active
CPU and the Reserve CPU.

- Commands via redundancy control panel (PX2612);

- Commands received from MasterTool or from a SCADA system,

through this CPU (local) or the other CPU (remote);

- Commands generated by user application (e.g.: in case of other

diagnostics as Ethernet communication failure) through this CPU
(local) or the other CPU (remote).

Main failures which prevents a

CPU to go to the reserve state
or remain in it.

Such failures drive the CPU to
a Not–Configured or Inactive

state.

- Supplying failure;

- Power supply;

- CPU (stop in the MainTask execution);

- NX4010;

- Failure in both synchronism channels (NETA and NETB) and the
cause is in the Reserve CPU.

- Failure in the synchronism service for redundancy data;

- Failure in the synchronism service for the redundant forcing list;

- Total failure in some vital PROFIBUS network;

- Different project from the Active CPU, with project automatic
synchronization enabled;

- Firmware version incompatible with the Active CPU.

Commands that drive the CPU
out of the reserve state

- Commands via redundancy control panel (PX2612);

- Commands received from MasterTool or from a SCADA system,

through this CPU (local) or the other CPU (remote).

- Commands generated by user application (e.g.: in case of other

diagnostics as Ethernet communication failure) through this CPU
(local) or the other CPU (remote).

Switchover time

- Up to 3 cycles from the MainTask, depending on the stimulus for
state change (command or failure);

- In case of PROFIBUS network failure, 2 MainTask cycles + 500
ms

No discontinuities switchover

(bump-less)

- A switchover doesn’t cause discontinuities in the controller

outputs, nor in the inner variables.

Redundancy overhead
(MainTask cycle CPU

consuming increased by
redundancy).

- Maximum value automatically calculated by MasterTool and

informed to the user, considering an empty redundant forcing list;

- Typical average value of 60ms for 224kbytes of redundant data,
in a system with a redundant PROFIBUS network and two
redundant Ethernet HSDN networks.

CPU display
- Among other diagnostics, shows the redundancy state (Active,

Stand-by, Inactive, Not-configured and Starting) together with the
CPU identification (PLCA or PLCB).

6. Redundancy with NX3030 CPU

 222

Redundancy Control Panel
PX2612

- Through buttons, allows commands of switchover or redundancy

states transition for maintenance;

- LEDs signalize the redundancy state in each half-cluster;

- NO relay allows a half-cluster to switch off the other in extreme

situations. A button allows the other half-cluster reactivating;

- Embedded resources for buttons, LEDs and relays tests.

Redundancy diagnostics

- Indicate failures in the PLCA and in the PLCB, independent of

their states (Active or Inactive);

- Prevent “obscure failures”;

- Allow quick maintenance, essential for high availability.

Redundancy commands

- Allow the execution of the same PX2612 control panel actions,
among other commands (e.g. switchover command).

- Can be executed in the local CPU, or transmitted to the other
CPU (remote) via synchronism channels NETA/NETB;

- Can be received through MasterTool or a SCADA system;

- Can be executed through user application.

Redundancy events
- Register diagnostics and redundancy commands changes, with

timestamp, allowing an investigation of the switchover causes.

SNTP (Simple Network Time
Protocol)

Allow the events to have a precise timestamp adjusted to the
world hour. It also synchronizes the CPU real time clock for other

applications.

Commands and diagnostics

synchronization

Each MainTask cycle, PLCA and PLCB exchange diagnostics and

commands through synchronism channels NETA or NETB. This
way, a CPU knows the other diagnostics and commands.

Redundant data

synchronization

Each MainTask cycle, the Active CPU copies redundant data to

the Inactive CPU through the synchronism channels NETA and
NETB. Non-redundant data are not synchronized.

Redundant forcing list

synchronization

Each MainTask cycle, the Active CPU copies the redundant

forcing list to the Inactive CPU through the synchronism channels
NETA and NETB. This list includes only forced redundant

variables, this way PLCA and PLCB can have different non-
redundant data groups forced, as these variables are not
synchronized.

Single project for PLCA and

PLCB

There’s a single project for the PLCA and PLCB, generated by

MasterTool. The project is composed by the applicative project
(executable code) and the archive project (source code).

CPU identification

Through MasterTool, a NX3030 CPU identifies itself as PLCA,
PLCB or non-redundant CPU. This identification isn’t part of the

applicative project generated by MasterTool, even though is
written in a CPU using MasterTool. The CPU identification allows
the feature of a single project for PLCA and PLCB.

Automatic project

synchronization

If the Active CPU project becomes different from the Inactive

CPU, it is copied from the first to the second. This synchronization
can take several MainTask cycles. One must remember the
project is composed by the applicative project (executable code)

and the archive project (source code), and both are synchronized.

This synchronization can be disabled in special cases in order to

allow visualization of project modifications which can only be
downloaded off-line in non-redundant CPUs.

On-line expansion of modules

and PROFIBUS remotes

There are project modifications that can’t be done on-line in a
non-redundant CPU, such as the inclusion of new modules or

PROFIBUS remotes.

However, using the CPU and the PROFIBUS network

redundancy, it was defined a procedure to accomplish this goal,
very important for systems which need high availability.

Private IP addresses for PLCA

and PLCB

It’s possible to connect to a specific CPU (PLCA or PLCB) using a

private IP address, to obtain half-cluster specific diagnostics, for
instance. The PLCA IP address will always be associated to the

PLCA NET(i) interface, while the PLCB IP address will always be
associated to the PLCB NET(i) interface..

Active IP

Name of a strategy that allows the Ethernet client connect to a
server from the redundant CPU using always the same IP

address. This prevents the necessity of complex scripts to change
the IP address when switchovers occur due to redundancy. The
Active IP address will always be associated to the NET(i) interface

from the Active CPU.

NIC Teaming
Name of the strategy which allows two Ethernet interfaces from a

half-cluster to form a redundant pair sharing a same IP address.

6. Redundancy with NX3030 CPU

 223

This way, redundant Ethernet network can be built easily, without

the need for the clients, connected to a NIC Teaming, to
implement complex scripts to switch IP addresses.

PROFIBUS Network and Vital

Failures Configuration

The CPU supports 2 PROFIBUS networks, each one may be
redundant or not. It’s also possible to configure if each

PROFIBUS network failure is considered vital (causes switchover)
or not.

Single and cyclic user task
Only one user task is allowed, called MainTask. This task is
cyclic.

Main POU programs:

NonSkippedPrg and ActivePrg

At a redundant project creation, MasterTool generates

automatically two empty POU programs, which must be filled by
the user:

- NonSkippedPrg: this POU is executed in both CPUs (PLCA and
PLCB), independent on the redundancy state (Active or Inactive).
It’s used for diagnostics and special commands management.

- ActivePrg: this POU is executed only in the Active CPU and is
used for the final user’s process control.

Table 6-1. General features of a redundant CPU

Purchase Data

The minimum configuration for a redundant CPU implies on the purchase of the following modules:

 Two racks, which must be chosen between the three available models according to the modules

to be installed:

o NX9000: 8 positions (4 double modules)
o NX9001: 12 positions (6 double modules)

o NX9002: 16 positions (8 double modules)

o NX9003: 24 positions (12 double modules)

 Two NX8000

 Two NX3030

 Two NX4010

 Two AL-2319

Furthermore, it may be necessary to purchase the following additional modules:

 One PX2612

 One AL-2317/A

 One AL-2317/B

 Two modules NX5001 for each simple PROFIBUS network.

 Four modules NX5001 for each redundant PROFIBUS network.

 Two modules NX5000 for each additional simple Ethernet network.

 Four modules NX5000 for each additional redundant Ethernet network (NIC Teaming).

ATTENTION:

It can be installed up to 4 PROFIBUS modules in each half-cluster. This means that we can

configure up to 4 simple PROFIBUS networks or up to 2 redundant PROFIBUS networks.

6. Redundancy with NX3030 CPU

 224

Principles of Operation

In this section, the redundant CPU functions using a NX3030 CPU is described, along with its

behavior and states. It’s also presented concepts and programming and configuration restrictions that

will be used in the next chapters.

NX3030 CPU Identification

A NX3030 CPU has a nonvolatile identification register where it’s possible for it to be identified as:

 Non-redundant: it can’t be used in a redundant CPU (default configuration)

 PLCA: used in the redundant CPU PLCA

 PLCB: used in the redundant CPU PLCB

The identification register can be adjusted using the MasterTool programmer. The first thing to be

done in a NX3030 CPU, before downloading the redundant project in it, is to identify it as PLCA or
PLCB. In case the identification isn’t executed, several redundancy features won’t work correctly, as,

for instance, the synchronization of the application between the PLCs.

ATTENTION:
The CPU identification register is not part of the redundant CPU project, thus it isn’t saved as part of

this project in the computer where MasterTool is being executed. The register is saved only in the

nonvolatile CPU memory.

Single Redundant Project

Due to the identification register previously described, there’s a single project for the redundant CPU,

identical for both PLCA and PLCB.

Configuration parameters that must be different for PLCA and PLCB (e.g. Ethernet interface IP

address) appear doubled in the redundant CPU project (one for the PLCA and another for the PLCB).
Each CPU will consider the correspondent one, after analyzing its identification register.

Redundant Project Structure

Redundancy Template

A redundant CPU project is created automatically from a model, called Redundancy Template.

The template starts from the minimum redundant CPU configuration, as defined in the Minimum

Configuration of a Redundant CPU section. Besides this, some dialogs with the user are made for the
insertion of additional modules in the half-clusters, such as PROFIBUS masters (NX5001) and

Ethernet modules (NX5000).

PROFIBUS remotes must be inserted by the user, below the NX5001 PROFIBUS masters already

inserted.

Furthermore, tasks and basic POUs from the program type are created, as described in the following

sections.

Single and Cyclic Task MainTask

The redundant CPU project has a single task, called MainTask, which is cyclic. The user can adjust

the task cycle time.

MainPrg Program

The MainTask is connected to a single POU from the program type, called MainPrg. The MainPrg

program is created automatically.

The MainPrg code is the following, in ST language:

6. Redundancy with NX3030 CPU

 225

fbRedundancyManagement();

NonSkippedPrg();

IF fbRedundancyManagement.m_fbDiagnosticsLocal.eRedState =

REDUNDANCY_STATE.ACTIVE THEN

ActivePrg();

END_IF

MainPrg call two POUs from the program type, called NonSkippedPrg and ActivePrg.

NonSkippedPrg is always called, as it’s executed in both CPUs. On the other hand, ActivePrg is only

called when the “RedDgnLoc.RedState = Active” condition is true, in other words, when the CPU is

in active state.

However, the NonSkippedPrg program is executed in both CPUs (PLCA and PLCB) independent on

the redundancy state of this CPU. On the other hand, the ActivePrg is executed only in the active

CPU.

Opposite to the MainPrg, which must not be modified, the user may modify the NonSkippedPrg and

ActivePrg programs. Initially, when the redundant project is created from the Redundancy Template,

these two programs are created “empty”, but after that the user may insert his code.

ATTENTION:

When the OPC option is enabled when creating the project, the NonSkippedPrg program is not

created empty. For more information, refer to the OPC Usage section in Redundant Projects.

ActivePrg Program

The main goal of this program, which is executed only in the active CPU, is to control the final user
process.

This program normally acts on the redundant variables, among which the direct representation

variables are found %I and %Q associated to the remote I/O system. For further information see the
chapter Redundant CPU Programming, MainTask Configuration - ActivePrg Program.

ATTENTION

The compilation being successful or not, MasterTool informs the calculated looseness and the

redundancy overhead predicted on the message window.

NonSkippedPrg Program

This program is executed in both CPUs (PLCA and PLCB) independent on the redundancy state. It’s

typically used for functions such as:

 To organize non-redundant diagnostics to report to a SCADA system

 To receive and execute non-redundant commands from a SCADA system

 To manage switchover conditions normally not automatically contemplated by the redundant

CPU, that can vary from user to user. E.g. a user will be able to execute a switch over to the
Reserve CPU if the Active CPU isn’t communicating with the SCADA system, while another

user may not want a switchover on this situation

 To enable or disable I/O drivers according to the redundancy state, e.g. disable a Modbus RS-485

master in the Inactive CPU

 To detect failures in I/O drivers in an inactive CPU, in order to avoid obscure failures. Some I/O

drivers don’t include such failures automatically detection, while others, such as the PROFIBUS,

does it automatically

 Other activities which, for some reason, need to be executed either in the Active CPU and the

Reserve CPU

For further information see MainTask Configuration - NonSkippedPrg Program chapter.

6. Redundancy with NX3030 CPU

 226

Redundant and Non-redundant Variables

The redundant CPU variables can be classified among redundant and non-redundant. Redundant

variables are copied from the Active CPU to the Inactive CPU, at the MainTask beginning of each
cycle, through the synchronism channels NETA and NETB. On the other hand, non-redundant

variables aren’t copied between half-clusters, thus can have different values in PLCA and PLCB.

The non-redundant variables are used to store private information of each half-cluster (PLCA or
PLCB), such as module diagnostics inside the half-cluster, including the redundancy diagnostics

(half-cluster diagnostics state, etc.).

The redundant variables regard the shared information connected to the process control. The

variables associated to the I/O modules are typical examples of redundant variables.

Redundant and Non-redundant %I Variables

The NX3030 CPU allocates 96 kbytes of %I variables (%IB0 ... %IB98303).

The first 82 kbytes can be redundant (%IB0 ... %IB81919). The last 16 kbytes are always non-
redundant (%IB81920 ... %IB98303).

The 80 kbytes area which can be redundant is allocated for inputs, which can be read from an I/O

remote module (PROFIBUS, Modbus, etc.).

The 16 kbytes non-redundant area is allocated for a half-cluster “quick private diagnostics”, and also
for the redundancy command panel PX2612 buttons. Quick diagnostics are the ones that must be

updated each MainTask cycle.

The user may configure the redundant %I variables quantity, between 0 and 81920 Kbytes, in 1kbyte
multiples (o valor default é 16384 bytes - %IB0 ... %IB16383). The proper configuration of

redundant %I from %IB0 is important to decrease the necessary time for redundant variables

synchronization (decrease the redundancy overhead). E.g. if the real application allocates only %IB0
... %IB1499 for redundant inputs, the redundant %I area size can be defined as 1500 bytes

The figure below illustrates the redundant and non-redundant %I direct representation variables

allocation, where RI is the %I quantity really configured as redundant

Figure 6-7. Redundant and Non-redundant %I Allocation

%I really

redundant

Reserved for
redundant %I

expansion

%I non
redundant

RI kbytes

RI = 0 ... 80
RI default = 16

80-RI kbytes

16 kbytes

80 kbytes

6. Redundancy with NX3030 CPU

 227

Redundant and Non-redundant %Q Variables

The NX3030 CPU allocates 96kbytes of %Q variables (%QB0 ... %QB98303).

The first 80 Kbytes can be redundant (%QB0 ... %QB81919). The last 16kbytes are always non-
redundant (%QB81920 ... %QB98303).

The 80 Kbytes area which can be redundant is divided in two sections:

 The first Kbytes are reserved for outputs that can be redundant, and are typically allocated for an

I/O remote system (PROFIBUS, Modbus, etc.). The size value is configurable and its default
value is 16384. By default, this section includes %QB0 ... %QB65535.

 The next bytes are reserved for diagnostics which can be redundant, from the I/O system (I/O

modules diagnostics, communication interfaces diagnostics, PROFIBUS slaves diagnostics, etc.),

for instance. Different from the quick diagnostics (allocated in %I), such diagnostics allocated in

%Q can take more than one MainTask cycle to be updated. By default this section includes 16
Kbytes (%QB65536 ... %QB81919).

The non-redundant area (%QB94208 ... %QB98303) is typically allocated for diagnostics and private

commands of a half-cluster, and also for the redundancy command panel PX2612 LEDs and relay.

The user can reduce the redundant %Q variable quantity in each one of the sections which can be

redundant…

 On the first section, the really redundant area size can be configured between 0kbytes and 65535

bytes, in 1kbyte multiples (the default value is 16384 bytes). The proper configuration of
redundant %Q is important to decrease the necessary time for redundant variables

synchronization (decrease the redundancy overhead). E.g. if the real application allocates only

%Q0 ... %Q1499 for redundant outputs, the redundant %Q area size can be defined as 1500

bytes.

 On the second section, the really redundant area size can be configured between 0kbytes and

81919 bytes, in 1kbyte multiples (the default value is 16384 bytes). The proper configuration of

redundant %Q is important to decrease the necessary time for redundant variables

synchronization (decrease the redundancy overhead). E.g. if the real application allocates only
%QB65536 ... %QB66999 for redundant diagnostics, the redundant %Q area size can be defined

as 1464 bytes.

The figure below illustrates the redundant and non-redundant %Q direct representation variables

allocation, where RQS is the %Q output quantity configured as redundant in the first section, and
RQD is the %Q diagnostics quantity configured as redundant in the second section.

6. Redundancy with NX3030 CPU

 228

Figure 6-8. Redundant and Non-redundant %Q Allocation

Redundant and Non-redundant %M Variables

The NX3030 CPU allocates 64kbytes of %M variables (%MB0 ... %MB65535).

All the 65535 bytes can be redundant (%MB0000 ... %MB65535). By default the redundant %M

variables quantity is 0.

The %M variable use must be avoided and the use of symbolic variables preferred (see Redundant

and Non-redundant Symbolic Variables section).

Redundant and Non-redundant Symbolic Variables

Besides the direct representation variables (%I, %Q and %M) which are allocated automatically. The
user can explicitly declare symbolic variables, inside of POUs or GVLs. The maximum size allowed

for redundant symbolic variables allocation is 512kbytes.

ATTENTION:

Symbolic variables must not be confused with AT variables. The AT variables are mere symbolic
names attributed to direct representation variables (%I, %Q and %M), using the “AT” declaration.

Thus, AT variables don’t allocate any symbolic variables memory.

Symbolic variables are redundant in the following cases:

 When declared in POUs from the “program” type created in the user application, exceptionally

the NonSkippedPrg program.

 When declared in GVLs created in the user application and these GVLs marked as redundant.

Symbolic variables aren’t redundant in the following cases:

%Q redundant

outputs

Reservado for
redundant %Q

output
expansion

Non-
redundant %Q

65 kbytes

16 kbytes

RQS kbytes
RQS = 0 ... 65535

RQS default = 16384

65536 - RQS

Redundant

%Q

diagnostics

Reserved for
redundant %Q

diagnostics

expansion

RQD kbytes
RQD = RQS ... 81919

RQD default = 16384

81920 - RQD

96 kbytes

80 kbytes

16 kbytes

6. Redundancy with NX3030 CPU

 229

 When declared in the NonSkippedPrg program. This program has been described previously in

the NonSkippedPrg section.

 When declared in POUs from the “function” type. It can be observed this POUs normally must

allocate variables only on the pile (non static), which consequently don’t need to be redundant. If

the user declares static variables (VAR STATIC) inside the POUs from the “function” type, this
will be considered bad programming. Such static variables, in case they are created, will be

considered non-redundant.

 When declared in POUs from the “function block” type. It can be observed the mere “function

block” declaration doesn’t allocate memory (what allocates memory is to turn a function block
into as instance).

It must be observed that the function blocks instances, declared inside POUs from the program type

or inside GVLs, behave as symbolic variables, in other words, allocate redundant memory. In the

same way symbolic variables, when function block instances, are declared in the NonSkippedPrg
program or when the GVL isn’t marked as redundant, such instances are non-redundant

Multiple Mapping

If the user desires to map the redundant command variables in more than one communication port
(COMx or NETx) it’s necessary the implementation of a control by the user within his own

application.

The control logic to be implemented must write in the redundant command variables based on the
variables (commands) values from each communication port (COMx or NETx). Besides that, the

control logic must restart the communication ports command variables, as the redundancy control

just restarts its own command variables.

The following is an example of this implementation:

VAR

var_StandBy_command_Ethernet_relation : BOOL;

var_StandBy_command_Serial_relation : BOOL;

var_Inactive_command_Ethernet_relation : BOOL;

var_Inactive_command_Serial_relation : BOOL;

var_TurnOn_command_Ethernet_relation : BOOL;

var_Turn_command_Serial_relation : BOOL;

END_VAR

//Logic to put the local PLC in StandBy

IF var_StandBy_command_Ethernet_relation = TRUE THEN

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal := TRUE;

var_StandBy_command_Ethernet_relation:=FALSE;

END_IF

IF var_StandBy_command_Serial_relation = TRUE THEN

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal:=TRUE;

var_StandBy_command_Serial_relation:=FALSE;

END_IF

// Logic to put the local PLC in Inactive

IF var_Inactive_command_Ethernet_relation = TRUE THEN

DG_NX4010.tRedundancy.RedCmdLoc.bInactiveLocal:= TRUE;

var_Inactive_command_Ethernet_relation:=FALSE;

END_IF

IF var_Inactive_command_Serial_relation = TRUE THEN

DG_NX4010.tRedundancy.RedCmdLoc.bInactiveLocal:=TRUE;

var_Inactive_command_Serial_relation:=FALSE;

END_IF

//Logic to switch on the local PLC switched off by the PX2612

IF var_TurnOn_command_Ethernet_relation = TRUE THEN

6. Redundancy with NX3030 CPU

 230

DG_NX4010.tRedundancy.RedCmdLoc.bTurnOnLocal:= TRUE;

var_TurnOn_command_Ethernet_relation:=FALSE;

END_IF

IF var_Turn_command_Serial_relation = TRUE THEN

DG_NX4010.tRedundancy.RedCmdLoc.bTurnOnLocal:=TRUE;

var_Turn_command_Serial_relation:=FALSE;

END_IF

Above there’s an example in ST language, where the redundancy command can be executed through
two variables from different communication ports. On the same example, three different commands

were executed (StandBy, Inactive and Turn-on).

Where:

var_StandBy_ command_Ethernet_relation: Bool type variable attributed to an Ethernet

communication Coil which will execute the command to put the local Half-Cluster in Stand-By.

var_StandBy_command_Serial_relation: Bool type variable attributed to a Serial communication

Coil which will execute the command to put the local Half-Cluster in Stand-By.

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal: this command executes an action similar to

the button STAND-BY from the PX2612, in the local PLC.

var_Inactive_command_Ethernet_relation: Bool type variable attributed to an Ethernet
communication Coil which will execute the command to put the local Half-Cluster in Inactive.

var_Inactive_command_Serial_relation: Bool type variable attributed to a Serial communication Coil

which will execute the command to put the local Half-Cluster in Inactive.

DG_NX4010.tRedundancy.RedCmdLoc.bInactiveLocal: this command executes an action similar to
the button INACTIVE from the PX2612, in the local PLC.

var_TurnOn_command_Ethernet_relation: Bool type variable attributed to an Ethernet

communication Coil which will execute the command to reactivate the local Half-Cluster after
switched off by the PX2612 relay.

var_Turn_command_Serial_relation: Bool type variable attributed to a Serial communication Coil

which will execute the command to reactivate the local Half-Cluster after switched off by the
PX2612 relay.

DG_NX4010.tRedundancy.RedCmdLoc.bTurnOnLocal: this command executes an action similar to

the button STAND-BY from the PX2612, in the local PLC.

Diagnostics, Commands and User Data Structure

Each CPU has several data structure related to redundancy. The following structure is AT variables

mapped over %Q variables:

 RedDgnLoc: has diagnostics from the CPU (local) related to the redundancy, as the CPU

redundancy state, for instance;

 RedDgnRem: it’s a copy from the other CPU RedDgnLoc, received through NETA/NETB

synchronism channels. This way, this CPU (local) has access to the other CPU (remote)

diagnostics;

 RedCmdLoc: has commands which must be applied on this CPU (when called Local) or on the

other CPU (when called Remote). E.g. the StandbyLocal field from this data structure
corresponds to a command which must be executed in this CPU (local), while the

StandbyRemote field corresponds to a command which must be executed in the other CPU

(remote);

 RedCmdRem: it’s a copy from the other CPU RedCmdLoc, received through NETA/NETB

synchronism channels. This way, this CPU (local) can execute commands received from the
other CPU (remote);

6. Redundancy with NX3030 CPU

 231

 RedUsrLoc: has 128bytes of data filled freely by the user (e.g. communication diagnostics with a

SCADA system). These 128bytes of data can be interchanged with the other CPU (remote);

 RedUsrRem: it’s a copy from the other CPU RedUsrLoc, received through NETA/NETB;

On Maintenance section, the following sub-sections offer more details regarding these data

structures:

 Redundancy Diagnostics Structure

 Redundancy Commands

 User Information Exchanged between PLCA and PLCB

Cyclic Synchronization Services through NETA and NETB

This section describes the three synchronization services which occur cyclically in a redundant CPU

between PLCA and PLCB, through NETA and NETB synchronism channels.

These services are executed at the beginning of each MainTask cycle, and in the sequence which they

appear below:

 First, the Diagnostics Exchange and Commands service is executed;

 Second, the Redundant Data Synchronization service is executed;

 Third, the Redundant Forcing List Synchronization service is executed.

Diagnostics and Commands Exchange

This service is responsible by the interchange of the following data structures, in each MainTask
cycle:

 To copy RedDgnLoc from PLCA to PLCB RedDgnRem;

 To copy RedCmdLoc from PLCA to PLCB RedCmdRem;

 To copy RedUsrLoc from PLCA to PLCB RedUsrRem;

 To copy RedDgnLoc from PLCB to PLCA RedDgnRem;

 To copy RedCmdLoc from PLCB to PLCA RedCmdRem;

 To copy RedUsrLoc from PLCB to PLCA RedUsrRem.

The service will be executed using only one synchronism channel (NETA or NETB). This way the

service can be completed even if one channel has problems.

Redundant Data Synchronization

This service is responsible for the redundant variables transferring, from the Active CPU to the

Inactive CPU. As previously described, there are symbolic redundant variables and also redundant
direct representation variables (%I, %M and %Q).

For this service to be executed, several conditions must be satisfied:

 The previous synchronization service in this MainTask cycle (Diagnostics and Commands

Exchange) must be completed with success;

 In case this CPU is in Active state, the other must be in Non-Active state. On the other hand, in

case this CPU is in Non-Active state, the other must be in Active state;

 Both projects (2 CPUs) must be identical, except when the project automatic synchronization is

disabled (see Project Synchronization Disabling section);

 At least one synchronism channel (NETA and/or NETB) must be operational. If both

synchronism channels (NETA and NETB) are operational, the communication is distributed

between both (load balances) in order to reduce the synchronization time. In case only one
channel is operational, the synchronism will continue to be executed only by this channel,

keeping the redundant data synchronization.

6. Redundancy with NX3030 CPU

 232

Redundant Forcing List Synchronization

This service is responsible for the redundant forcing list transferring, from the Active CPU to the

Inactive CPU.

For this service to be executed, several conditions must be satisfied:

 Both synchronization services previous to this cycle (Diagnostics and Commands Exchange)

must be completed with success;

 In case this CPU is in Active state, the other must be in Non-Active state. On the other hand, in

case this CPU is in Non-Active state, the other must be in Active state;

 Both projects (2 CPUs) must be identical, except when the project automatic synchronization is

disabled (see Project Synchronization Disabling section);

 At least one synchronism channel (NETA and/or NETB) must be operational. If both

synchronism channels (NETA and NETB) are operational, the communication is distributed

between both (load balances) in order to reduce the synchronization time. In case only one

channel is operational, the synchronism will continue to be executed only by this channel,
keeping the redundant data synchronization.

ATTENTION:

The redundant forcing list has only forcing over redundant variables. On each CPU (PLCA and
PLCB), there can be a different forcing list related to non-redundant variables.

Sporadic Synchronization Services through NETA and NETB

The following synchronization services are executed sporadically, in other words, they are not

executed in each MainTask cycle. Another system task executes these sporadic services in
background.

Project Synchronization

This service is responsible for synchronizing the Active CPU and Non-Active CPU projects. This

happens when the projects are different in both CPUs and the automatic projects synchronization is
enabled on both CPUs.

The synchronization is always from the Active CPU to the Non-Active CPU and it’s enough that a

one out of two synchronism channel (NETA or NETB) is operational for this service to be executed.

When the synchronization is enabled, the following files and services will be synchronized:

 Project application(executable code);

 Project archive (source code);

 User and groups;

 Access rights;

 Trace.

The synchronization service will start within thirty seconds after one of the CPUs goes to Active

state, and after its beginning, the project CRC will be checked every five seconds.

When synchronization is started the Non-Active CPU goes to Stop mode, at the Not-Configured

state. After the transferring of all necessary files, the Non-Active CPU goes to Run, at Starting state.

In case the transfer fails, the CPU goes back to Not-Configured state.

The time the synchronization will take to be fully executed depends on the project size. In average, a
transfer rate between the synchronism channels is approximately 500 Kbytes/s.

In case the synchronization is interrupted (communication loss between synchronism channels)

during the files transferring from the Active CPU to the Non-Active CPU, the procedure is aborted
and restarted when the communication is restored. Only after the conclusion of the whole procedure

the Non-Active CPU goes to Run mode.

6. Redundancy with NX3030 CPU

 233

Besides keeping the projects synchronized, the Project Synchronization will also avoid the Non-

Active CPU to assume superior states in relation to Starting in case the CRC is different or some

Online Change is to be executed in the Active CPU.

ATTENTION:

A project synchronization will have the same effect as a download in the Non-Active CPU. This

service isn’t executed if the automatic Project Synchronization Disabling, as it’s described on

Project section. No synchronization service between CPUA and CPUB works in case the
synchronism channels cables are inverted. E.g. to connect the NETA channel in the NETB channel

from CPUB and the NETB from the CPUA in the NETA in the CPUB.

ATTENTION:
In the update from the version 1.20 to later versions of MasterTool IEC XE, was done a modification

in the communication protocol between the synchronism channels. Therefore, is not possible to sync

data between two PLCs when one of the applications has been created in a version prior to 1.21 and
another application has been created in an equal or higher version. To be able to perform the

synchronization, you should perform the actions described at section Not Loading the Application at

Startup in the PLC with the oldest project. Doing this, the application will not be loaded, but, when

this PLC goes to Non-Configured state during the system initialization, the applications will be
synchronized automatically.

ATTENTION:

Before version 2.01 of MasterTool IEC XE, when sending the source code to the active CPU, the
Stand-by CPU went for Non-Configured state to sync it. However, to complete the synchronization

operation, the CPU remained in the state Non-Configured, being necessary to pass the CPU to

Stand-by status via STAND-BY button on the PX2612 or equivalent command. Starting with
version 2.0.1 the CPU that is in Stand-by will change your state to Not-Configured during the

synchronization process, but will return automatically when the sources are the same between the

two Half-Clusters

Project Synchronization Disabling

On Sporadic Synchronization Services through NETA and NETB section, applicative project and

archive project synchronization services were described. These services normally must be enabled,

and are useful when the project modifications can be downloaded on-line in the Active CPU and the

Stand-by CPU afterwards, automatically, through the synchronism channels NETA/NETB.

However, there are project modifications which can’t be downloaded on-line in any CPU, e.g. the

inclusion of modules in a PROFIBUS remote, or the inclusion of a new PROFIBUS remote. In these

cases, using the CPU and PROFIBUS network redundancy, such modifications can be made without
interrupting the process control. A procedure to accomplish this objective is described in the

Exploring the Redundancy for Off-Line downloading of Modifications without Interruption of the

Process control section.

In this procedure it’s necessary to disable temporarily the project synchronizations, allowing, for a

while, one CPU to operate with a project new version, while the other CPU still operates with the old

project version.

A NX3030 CPU has a register for Project Synchronization Disabling, nonvolatile, which allows the
disabling of the project application and project archive synchronization services. This register can be

adjusted using MasterTool. It’s enough to disable the project synchronization in one of the two CPUs

to guarantee it doesn’t work anymore.

6. Redundancy with NX3030 CPU

 234

To disable the Project synchronization, the user must, firstly, connect into desired PLC with the

software MasterTool (see chapter MasterTool Connection with a NX3030 CPU from a Redundant

PLC).

Next, in the Online / Cluster Basic Configuration menu, the combo-box “Project Synchronization”

must be opened, allowing the selection of the two following options:

 Enable

 Disable

The option “Disable” must be selected and the combo-box correspondent “Write” button pressed. A
message informs if the operation is successful or not.

The disabling configuration of project synchronism isn’t part of the redundant project developed in

the MasterTool. Such configuration is only in a non-volatile memory area in the CPU, which can be

read or written using MasterTool. MasterTool doesn’t save this configuration in any file.

This configuration is copied on each cycle of MainTask, from the non-volatile memory to the

DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bProjectSyncDisable. The user can verify

this diagnostics in the PLC to see if the command succeeded, since the PLC is in Run mode
(DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bProjectSyncDisable must be 1). In case the

PLC isn’t in Run mode, it’s possible to verify configuration straight on the NX3030 CPU display in

the PLC (see Redundancy Diagnostics on the NX3030 CPU Graphic Display section).

The DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bProjectSyncDisable diagnostic can also

be observed also in the remote PCL through the

DG_NX4010.tRedundancy.RedDgnRem.sGeneral_Diag.bProjectSyncDisable (since the Non-Active

PLC is in Run mode). A PLC (Active or Non-Active) stops the project synchronization service every
time any of the following bits are true:

 DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag. bProjectSyncDisable

o This PLC, local bit. This PLC is with the project synchronization disabled.

 DG_NX4010.tRedundancy.RedDgnRem.sGeneral_Diag. bProjectSyncDisable

o The other PLC, remote bit. The remote PLC is with the project synchronization disabled.

ATTENTION:

The Project Synchronization Disabling register isn’t part from the redundant CPU project, thus it’s

not saved as part of it in the computer where MasterTool is being executed. The register is saved

only in the nonvolatile CPU memory.

PROFIBUS Network Configuration

It’s possible to install up to four PROFIBUS Master NX5001 modules in each half-cluster. So, we

can define up to two redundant PROFIBUS networks, called PROFIBUS 1 and PROFIBUS 2, or up

to four simple PROFIBUS networks, called PROFIBUS 1, PROFIBUS 2, PROFIBUS 3 and
PROFIBUS 4, or even one redundant network and two simple ones, named PROFIBUS 1,

PROFIBUS 2 and PROFIBUS 3.

PROFIBUS Redundancy

Each of the PROFIBUS networks can be redundant or not redundant. For example, if PROFIBUS 1

network is redundant, it will be divided into PROFIBUS 1 A and PROFIBUS 1 B. If it’s not

redundant, there’s going to exist only PROFIBUS 1 A. The same applies to the PROFIBUS 2.

Figure 6-1 shows an example with a single PROFIBUS network (PROFIBUS 1), which is redundant
(PROFIBUS 1 A and PROFIBUS 1 B).

Only a few remote types can be connected straight to this redundant PROFIBUS network:

 PO5063V5: PROFIBUS slave DP-V0 for Ponto Series remotes;

6. Redundancy with NX3030 CPU

 235

 PO5065: PROFIBUS slave DP-V1 with Hart, for Ponto Series remotes;

 AL-3416: PROFIBUS slave DP-V0 for AL-2004 CPU.

 NX5210: PROFIBUS slave DP-V0 for Nexto Series remotes.

Figure 6-1 also shows the possibility to connect non-redundant remotes to this type of redundant

PROFIBUS network, through the AL-2433 module (ProfiSwitch). Such non-redundant PROFIBUS

remotes can be from any brand or model.

PROFIBUS Failure Modes Vital and Not-Vital

Each one of the PROFIBUS networks can be configured in two different modes:

 Vital failure: in case this network fails completely, this failure can determine a redundancy state

transition in the redundant CPU (switchover). In case a redundant PROFIBUS network, a
complete failure implies in the failure of both composing networks.

 Not-Vital failure: even if this network fails completely, this failure won’t determine a redundancy

state transition in the redundant CPU (switchover).

Redundant Ethernet Networks with NIC Teaming

Figure 6-1 shows two redundant Ethernet networks examples, with NIC Teaming.

In the first case, the NX3030 CPU connects to the supervision network (SCADA), also used for

configuration through MasterTool. Both NX3030 CPU Ethernet ports (NET 1 and NET 2) form a

NIC Teaming redundant pair, interconnected in two different switches (Ethernet A and Ethernet B).
In some point, these two switches must be interconnected, for the two NIC Teaming ports connection

and for an even higher availability (against double failures).

In the second case, two NX5000 modules also form a NIC Teaming redundant pair, interconnected in
two different switches (Ethernet HSDN A and Ethernet HSDN B). In some point, these two switches

must be interconnected, for the two NIC Teaming ports connection and for an even higher

availability (against double failures).

Such Ethernet architectures turn possible an excellent availability, against Ethernet port failures, in
cables and switches.

ATTENTION:

If two modules, or Ethernet interfaces, form a NIC Teaming redundant pair, the configuration and

device inclusion will be only possible in the first interface. The second interface will have his
configuration parameters blocked for edition.

A cluster of two Ethernet ports forming a NIC Teaming pair has a single IP address, related to the

port pair. This way, a client as SCADA or MasterTool, connected to a CPU server, doesn’t need to
worry in IP address changing in case there’s a failure in any NIC Teaming pair port.

Each of the Ethernet interfaces that form the NIC Teaming pair have a unique diagnostics structure to

point to failures which eventually might appear in any port of a NIC Teaming pair.

For further details regarding NIC Teaming configuration and diagnostics, see the following sections:

 Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)

 NX5000 Modules Configuration

IP Change Methods

A redundant cluster from Nexto Series has four methods for IP change in the Ethernet ports of the

NX5000 modules in each half-cluster and one method for IP change in the NET1 and NET2 ports of
the NX3030 CPU. These methods define the ports’ behavior, regarding its IP, according to the

current state of the half-cluster (Active or Non-Active) and with the half-cluster (PLCA or PLCB).

The methods are: Fixed IP, Exchange IP, Active IP and Multiple IP.

6. Redundancy with NX3030 CPU

 236

Overall, it can be listed up to four IPs, according to the IP change method.

Fixed IP

It’s the simplest method for IP addressing and can be configured in the Ethernet interfaces in the
NX5000 Ethernet modules. In this method, it’s only listed the IP addresses from the PLCA and from

PLCB. Apart from the redundancy state, PLC Active or Non-Active, the PLCA will always answer

by the configured IP, as also will PLCB.

Figure 6-9. Fixed IP method

Parameters that must be configured in the Fixed IP method:

 IP Address PLC A: PLCA communication address

 IP Address PLC B: PLCB communication address

 Subnetwork Mask

 Gateway Address

Exchange IP

The Exchange IP can be configured in the Ethernet interfaces in the NX5000 Ethernet module. In this
method, the half-cluster IP depends on the PLC state (Active or Non-Active). On every switchover

the IP change occurs between the half-clusters allowing them to assume the IP address from the new

redundancy state.

PS: for this addressing method, the Ethernet ports from both PLCs (PLCA and PLCB) assume the

same IP address while they both are in the Non-Active state, generating a network address conflict.

Considering this situation uncommon, where no PLC is controlling the system, this turns out to be a

big problem and has to be considered.

Figure 6-10. IP Automatic Change

6. Redundancy with NX3030 CPU

 237

Parameters that must be configured in the Exchange IP method:

 IP Address Active: PLCA communication address

 IP Address Non Active: PLCB communication address

 Subnetwork Mask

 Gateway Address

Active IP

This method is used in the redundant NX3030 CPU NETs and is also possible to be configured in the
NX5000 modules. In this method there’s an IP for the Active half-cluster and two more IPs, one for

the PLCA and another for the PLCB. In the redundant NX3030 CPU NETs, the Active IP address is

added to the interface of the Active PLC, and it can use either the Active IP address or the PLCX IP
address in order to establish communication with the PLC. On the other hand, in the NX5000

Ethernet modules the Active IP address substitutes the Non-Active PLCX IP address, when the PLC

is in Active mode.

Figure 6-11. Active IP method – Redundant NX3030

Parameters that must be configured in the Active IP method for the NETs of a redundant NX3030

CPU:

 IP Address Active: IP address added to the interface when the PLC is in Active state;

 IP Address PLC A: PLCA communication address, apart from its current state;

 IP Address PLC B: PLCB communication address, apart from its current state;

 Subnetwork Mask;

 Gateway Address.

6. Redundancy with NX3030 CPU

 238

Figure 6-12. Active IP method – NX5000

Parameters that must be configured in the Active IP method for the NX5000 Ethernet modules:

 IP Address Active: Active PLC communication address. Replaces the IP address from the Non-

Active PLCX;

 IP Address PLC A Non Active: PLCA communication address, when in Non-Active state;

 IP Address PLC B Non Active: PLCA communication address, when in Non-Active state;

 Subnetwork Mask;

 Gateway Address.

Multiple IP

The Multiple IP method can be configured in the Ethernet interfaces from the NX5000 Ethernet

modules. In this method there’s an IP for each half-cluster and for each state of the PLC. The PLCA

assumes an IP address when it’s Active and another when it’s Non-Active. The same happens for the

PLCB regarding its state (Active or Non-Active).

Figure 6-13. Multiple IPs method

6. Redundancy with NX3030 CPU

 239

Parameters that must be configured in the Multiple IP method:

 IP Address PLC A Active: PLCA communication address, when in Active state.

 IP Address PLC A Non Active: PLCA communication address, when in Non-Active state.

 IP Address PLC B Active: PLCB communication address, when in Active state.

 IP Address PLC B Non Active: PLCB communication address, when in Non-Active state.

 Subnetwork Mask.

 Gateway Address.

NIC Teaming and Active IP Combined Use

In case a determined port pair form a NIC Teaming in a redundant CPU, these ports can implement,
at the same time, the strategies NIC Teaming and Active IP.

E.g. if the NX3030 CPU NET 1 and NET 2 ports form a NIC Teaming pair, then:

 IP Address PLC A: IP address of the NET 1 + NET 2 ports in the PLCA NX3030 CPU

 IP Address PLC B: IP address of the NET 1 + NET 2 ports in the PLCB NX3030 CPU

 IP Address Active: IP address of the NET 1 + NET 2 ports in the NX3030 CPU in the Active

CPU

This way, the excellent availability from the NIC Teaming strategy is associated with the practicality

of the Active IP strategy, which doesn’t need scripts in SCADA systems or in other clients connected

to the Active CPU server.

Ethernet Interfaces Use with Vital Fault Indication

The Ethernet ports of NX3030 and NX5000 modules can be configured to generate vital failures.

This option is important for applications in which the modules of inputs and outputs are distributed

over Ethernet network. In this case, if a failure occurs on the Ethernet port, this will generate a
switchover. This behavior is applicable only to Ethernet ports where there is at least a communication

driver that manages fault.

The communication drivers that generate vital failure are MODBUS client and MODBUS Symbol
Client (all references to MODBUS Client in the following sections apply to both cases). The

MODBUS Server drivers, MODBUS Symbol Server and EtherCAT Master do not generate vital

failure. Thus, if an Ethernet port has a MODBUS Client driver configured and a failure occurs in the

Ethernet port, a switchover will be generated if vital fault option is enabled. If the driver configured
on the Ethernet port is a MODBUS Server, even if there is failure in the door, it will not generate a

vital failure that causes a switchover.

To a fault be considered a vital failure in an Ethernet port on a MODBUS Client, all servers
configured in the driver must be faulty. That is, if there is more of a MODBUS Client driver

configured in the same Ethernet port, is considered vital fails when all servers of both Clients are

faulty.

When the Ethernet port is configured to operate with NIC Teaming, the vital failure will be

considered only when the two pair of doors fails.

Failure in Ethernet Interface

A switchover can be generated due to failure in the Ethernet interface, such as a loss of link. The link
loss may be caused, for example, by a cable breakage or failure of a switch on the Ethernet network.

Accordingly, it is necessary that, in addition to being configured to generate vital failure, there is a

MODBUS Client instance configured on the Ethernet interface.

When the interval of MainTask is greater than or equal to 100 ms after the fault is detected the

switchover will occur in up to two cycles of MainTask. When the interval of MainTask is less than

100 ms switchover will occur within 100 ms plus the time of MainTask after detection of failure.

6. Redundancy with NX3030 CPU

 240

Failure in Connected MODBUS Server

The time to detect the fault in a remote MODBUS Server depends on the time-out settings configured

on each MODBUS Client. When a fault is detected in all Servers, the bAllDevicesCommFailure
diagnostic (see Modbus Diagnostics used at Redundancy section used in) changes its state to TRUE.

When this happens, the switchover will happen 3 seconds after this transition.

OPC Communication Use with Redundant Projects

The OPC protocol can be configured to communicate with redundant clusters over SCADA systems.

When this option is selected in the creation of a redundant project, the Symbol Configuration object

is added to the project. In this object are set system variables that will be sent to the SCADA system.

This communication option is enabled in the CPU of the Ethernet ports NX3030. For further
information related to the configuration of an OPC communication with redundant projects, refer to

the Configuration with the PLC on the OPC Server with Connection Redundancy section of this

Manual.

Redundant CPU States

In a redundant system, a CPU (PLCA or PLCB) may assume the following states:

 Active

 Stand-by

 Inactive

 Not-Configured

 Starting

ATTENTION:

Frequently this manual will use the designation “Non-Active” for each state different from Active, in
other words, to design any one from the other 4 states (Stand-by, Inactive, Not-Configured and

Starting). An Active CPU is the one that is in Active state and a Non-Active CPU is the one that

isn’t in Active state.

In the following sections these five states are briefly described. Further details regarding the
redundant CPU states are described in the Transition between Redundancy States section, when the

state machine and the transition causes are also described.

Not-Configured State

This is the initial redundancy state. The CPU is found in this redundancy state:

 By convention, while the CPU is OFF

 Before starting the MainTask

 Before the Starting state is switched

 In case there’s a restart through a command as reset warm, reset cold or reset origin

In case the MainTask is being executed in the Not-Configured state, the following tasks are executed:

 The PROFIBUS masters are disabled

 The cyclic synchronization services are executed (see Cyclic Synchronization Services through

NETA and NETB section), if the condition for its execution are true

 The sporadic synchronization services can also be executed (see Sporadic Synchronization

Services through NETA and NETB section)

The CPU will be blocked in the Not-Configured state if the other CPU is in Active state, and this

CPU project is different from the Active CPU project (except if the project automatic

synchronization is disabled – see Project Synchronization Disabling). In case this situation doesn’t
occur, a transition from the Not-Configured state for the Starting state happens as soon as a

configuration request arrives.

6. Redundancy with NX3030 CPU

 241

Sometimes, the CPU goes to Not-Configured state when has already received an automatic

configuration request, when the new request for Starting state changing is not necessary. This

happens at the CPU energizing, for instance.

In other situations, the user must request manually this configuration, e.g. pressing a button on the

PX2612 redundancy command panel. Manually configuration requests typically aren’t necessary

when a user maintenance is needed before going out from the Not-Configured state, e.g. if the CPU
hasn’t reached the Not-Configured state due to some failure.

After getting out from the Not-Configured state, the PLC can go back to this state, due to events such

as:

 Restarting (reset warm, cold or origin)

 PLC switch off

 Different projects between this PLC and the Active PLC

Starting State

Different from all other 4 states which can last indefinitely, the Starting state is temporary, taking

only a few seconds. This state is always reached from the Not-Configured state, through a

configuration request.

At the beginning of the Starting state, several actions, tests and verifications are executed, in order to

decide which will be the next state:

 PROFIBUS masters are enabled in a passive state. The passive mode is used to test the

transmission and reception PROFIBUS circuits and the physical layer, to avoid an occult failure
to happen;

 Verify if the CPU identification is correct (must be PLCA or PLCB);

 Verify if there are problems in the configuration parameters extracted from MasterTool project;

 Verify the NX4010 module integrity;

 The cyclic synchronization services are executed (see Cyclic Synchronization Services through

NETA and NETB section), if the conditions for its execution are true;

 Verify the firmware compatibility version between both CPUs;

 Verify if the projects from both CPUs are equal, if the project automatic synchronization is

enabled (see Project Synchronization Disabling section).

 In case the other CPU is in Active state, verify the possibility to establish a passive PROFIBUS

communication with it. The passive mode is used to test the transmission and reception
PROFIBUS circuits and the physical layer, to avoid an occult failure to happen;

 In case the other CPU is in unknown state due to failures in NETA and NETB, verify the

possibility of establishing a passive PROFIBUS communication with it.

Depending on the results of these verifications and tests, the CPU can go from the Starting state to
any from the other four states.

Active State

In this state, the CPU controls the automated process, using the ActivePrg program, executed only in
this state. The Active CPU also updates the PROFIBUS remote I/O system, putting its PROFIBUS

masters in active state. The active state is used to establish communication with the PROFIBUS

remotes (slaves).

The Active CPU also verifies its internal diagnostic and user switchover requests to determine if a
switchover is necessary. The CPU goes out from the Active state only if it knows the other CPU is in

Stand-by mode, and able to assume as Active.

However, there are some situations where the Active CPU could go out from the Active state even
with no certainty that the other CPU is in Stand-by state (e.g. if the CPU is switched off).

6. Redundancy with NX3030 CPU

 242

Stand-By State

In this state the CPU is ready to be switched to the Active state, in case there’s a request for that, as a

failure in the Active CPU.

The Stand-by CPU also verifies its own diagnostics and can be switched to the Not-Configured or

Inactive state, in case some failures occur.

PROFIBUS masters are enabled in the passive state. The passive mode is used to test the
transmission and reception PROFIBUS circuits and the physical layer, to avoid an occult failure to

happen. Total failure in PROFIBUS networks configured as vitals cause a switching to the Inactive

state. A total failure in a PROFIBUS network damages both composing networks (redundant

PROFIBUS network) and the single composing network (non-redundant PROFIBUS network).

If the Ethernet interfaces are enabled with vital failure option, clients are enabled in passive state.

Total failures in Ethernet networks configured as vital cause a switch to the Inactive status. A total

failure in an Ethernet network reaches the two networks that comprise (enabled Communication
Redundancy option) or the only network that compose (Redundancy option disabled

Communication).

Inactive State

This state is normally reached after some failure types, or due to a manual request before a
programmed maintenance.

PROFIBUS masters are enabled in the passive state. The passive mode is used to test the

transmission and reception PROFIBUS circuits and the physical layer, to avoid an occult failure to
happen.

Before switching to another state, first the diagnosed failures must be corrected or the programmed

maintenance executed, if those have driven the CPU to Inactive state. After, a transition for the Not-
Configured state must be done, requesting a configuration. Then, a switch to the Starting state must

be executed. After the Starting state, the CPU can:

 Return to the Inactive state, if determine failure types remain

 Return to the Not-Configured state, in case of other failure types

 Go to Stand-by state, if the other CPU is in Active state

 Go to Active state, if the other CPU isn’t in Active state

PX2612 Redundancy Command Panel Functions

The PX2612 redundancy command panel is shown on Figure 6-4, while Figure 6-5 shows its frontal
view with more details. Besides this, Figure 6-6 shows how this panel must be connected to the

PLCA and PLCB half-clusters.

The PX2612 is divided in two sections: one controlled by PLCA and another by PLCB. These
controllers are possible through cables AL-2317/A for PLCA and AL-2317/B for PLCB, and allow

each CPU to read three buttons, write on three LEDs and a NO relay contact.

Observing the frontal view on Figure 6-5:

 PLCA executes the STAND-BY and INACTIVE buttons reading in PLC A sector.

 PLCA executes the TURN ON PLC B button reading.

 PLCA executes the writing on the three LEDs (ACTIVE, STAND-BY and INACTIVE) from the

PLC A sector.

 PLCA executes the writing on the RL B relay, used to switch off PLCB.

 PLCB executes the STAND-BY and INACTIVE buttons reading in the PLC B sector.

 PLCB executes the TURN ON PLC A button reading.

 PLCB executes the writing on the three LEDs (ACTIVE, STAND-BY and INACTIVE) from the

PLC B sector.

 PLCB executes the writing on the RL A relay, used to switch off PLCA.

6. Redundancy with NX3030 CPU

 243

PX2612 Buttons

This section describes the functions of the PX2612 buttons.

The STAND-BY button has the following functions:

 To request a switching from the Active state to the Stand-by state, useful when maintenance in

the Active CPU is needed. After the Active CPU is switched to Stand-by (and consequently the

Stand-by CPU is switched to Active), it’s possible to switched from Stand-by to Inactive using

the INACTIVE button, and then execute the programmed maintenance in the inactive state.

 To request a configuration which causes a switching from the Not-Configured to the Starting

state, typically after the failures that caused the transition to the Not-Configured state are

repaired. After the Starting state, normally the CPU is supposed to go to the Stand-by state (or

Active, if the other CPU isn’t in the Active state).

 To request a switching from the Inactive state to the Not-Configured state requesting a

configuration already. This occurs typically after the failures which caused the transition to the
Inactive state were corrected. After the Not-Configured state, the configuration must take it to the

Starting state. After the Starting state, normally the CPU is supposed to go to the Stand-by state

(or Active, if the other CPU isn’t in the Active state).

The INACTIVE button requests a switching from the Stand-by state to the Inactive state, which can

be useful to execute a programmed maintenance in the Stand-by CPU. After this maintenance, the

STAND-BY button may be used to make it go back to the Stand-by state, passing by the Not-
Configured and Starting state (see previous description of the STAND-BY button).

The TURN ON PLCx (x = B for PLCA, or x = A for PLCB) button is used to cause a reactivating in

the other CPU, in case the local CPU has switched off. As it is described in the Transition between

Redundancy States section, there are exceptional situations when a CPU switches off the other at
assuming the Active state, in order to avoid the possibility of both CPUs to assume the Active state

simultaneously.

ATTENTION:

For a button to be considered, it must be pressed for at least 1 second. Furthermore, during this
second, only this button must be pressed (the other 2 buttons must be released).

ATTENTION:

There are alternative ways to generate the same effects of the STAND-BY, INACTIVE and TURN
ON PLCx buttons. Commands generated by the local CPU or the remote CPU can be used, as

described, preliminary, in the Diagnostics, Commands and User Data Structure section. A more

detailed description of these commands can be found in the Redundancy Commands section.

PX2612 LEDs

The PX2612 LEDs are used to inform the redundancy state, as shown on the following Table 6-2:

Redundancy state LED ACTIVE LED STAND-BY LED INACTIVE

Not-Configured off off off

Starting on on on

Active on off off

Active (recent) blinking off off

Active (switching off the other CPU) on blinking off

Active (recent and switching off the
other CPU)

blinking blinking off

Stand-by off on off

Inactive off off on

Table 6-2. PX2612 LEDs

6. Redundancy with NX3030 CPU

 244

Each LED can be off, on or blinking. In case it’s blinking, it remains on for 0.5 seconds and off for

the same time.

Note that there are four different animations for the Active state, due to the following features:

 At the first 2 seconds in Active state the LED ACTIVE led blinks and remains on afterwards.

This animation was created because in the first instants of the Active state, the CPU won’t accept

commands to get out from this state. For further details regarding this Active CPU behavior, see

Transition between Redundancy States and First Instants in Active State sections.

 In case this CPU is switching off the other CPU through its PC2612 relay, the LED STAND-BY

blinks. It remains off otherwise.

PX2612 Relays

The PX2612 has two NO relays. The PLCA can control the RL B, to command the PLCB switching

off. The PLCB can control the RL A, to command the PLCA switching off.

Such switching off situations happen in exceptional situations, described in the Transition between

Redundancy States section.

Transition between Redundancy States

The following figure shows the redundancy state machine, illustrating all the possible transitions

between redundancy states.

Figure 6-14. Redundancy State Machine

The following sub-sections describe all these transitions, and the causes which can trigger them. In
order to interpret correctly this state machine functioning, some rules and sequences must be

established:

 Transitions which originate from the same state must be analyzed in the sequence established by

their number. E.g. the transitions 2, 3, 4 and 5 are originated from the Starting state. In this

example, the transition 2 is first analyzed, then 3, 4 and, finally, 5. In case the transition 2 is
triggered, the transitions 3, 4 and 5 won’t be analyzed

 Inside a specific sub-section describing a transition, several conditions can trigger it. These

conditions must be analyzed in the sequence they appear in the sub-section. Any condition that

goes true can cause a transition. If a condition causes a transition, the next conditions don’t need
to be analyzed

Not-

Configured

Starting

Stand-by Active Inactive

1

3
4

5

6 7

9

10

11

12

8

6. Redundancy with NX3030 CPU

 245

 Transitions can only be triggered if the CPU is on and the MainTask is executing. Otherwise the

CPU is assumed to be in the Not-Configured state

 In several cases, transitions caused by the PX2612 panel buttons are mentioned. It must be

recalled there are alternatives for these buttons, which are internal commands from one CPU or

the other (via NETA / NETB). Such commands were mentioned preliminary in the Diagnostics,
Commands and User Data Structure section and are better described in the Redundancy

Commands section. In the following sub-sections, to simplify, these commands are not

mentioned, but one must remember they can cause the same transitions as the PX2612 button.

Transition 1 – Not-Configured to Starting

ATTENTION:

The conditions of this sub-section must not be analyzed in case the other CPU is in Active state and

the projects are different. This CPU must remain in the Not-Configured state while its project is
different from the other CPU project, if the other is in Active state. This note isn’t valid if the project

automatic synchronization is disabled (see Project Synchronization Disabling section), as in this case

differences between the CPUs projects are allowed.

 A configuration request is already existent at the beginning of the Not-Configured state. This

occurs in the moment the CPU is switched on, and also other situations, described in the next
sub-sections.

 The STAND-BY button was pressed during the Not-Configured state. This causes a manual

configuration request. The user typically presses STAND-BY after fail repairing which had

driven this CPU to the Not-Configured state.

Transition 2 – Starting to Not-Configured

 This CPU was turned off or restarted (warm reset, cold or origin) or its CPU went to Stop mode

 The identification register of this CPU is invalid (different than PLCA or PLCB)

 There are logic configuration errors in the project received from MasterTool IEC XE

 The other CPU is in the Active state and the firmware version in this CPU is incompatible with

firmware version in it

 The other CPU is in Active state and the project in this CPU is different from the project in it.

Besides going to the Not-Configured state, a configuration request is made. This way, after the

projects are synchronized, the CPU goes out automatically from the Not-Configured state to the
Starting state. This condition isn’t analyzed if the project automatic synchronization is disabled (

Project Synchronization Disabling section)

Transition 3 – Starting to Inactive

 NX4010 module not detected in the bus, or its microprocessor failure

 A synchronism channel (NETA or NETB) is in failure and this CPU knows this failure was

caused by hardware components or internal software (internal failures of NETA or NETB)

 The Other CPU is in Active state. However, it’s not possible to synchronize the redundant data or

the redundant forcing list

 The other CPU state cannot be discovered through NETA / NETB, but this CPU can monitor the

traffic in some configured PROFIBUS networks in vital fail mode. This way, it looks like the
other CPU is controlling the process, even though NETA / NETB aren’t working to confirm it

 Link loss occurred to an Ethernet Interface configured as Vital Failure

Transition 4 – Starting to Active

 The other CPU is in Non-Active state. Before the transition is possible, this condition must

remain true for some time, higher to PLCB than PLCA. This way, at the moment PLCA and

PLCB are simultaneously turned on; PLCA has priority to take over in Active state

6. Redundancy with NX3030 CPU

 246

 The other CPU state can’t be discovered through NETA / NETB, and besides that this CPU can’t

monitor traffic in any PROFIBUS network configured as vital fail mode, or those networks

weren’t created. Therefore, it really looks the other CPU if off or out of execution. For safety

reasons, besides switching to Active, this CPU turns the other off using its PX2612 relay. This
condition must be kept for a while before the transition is executed

Transition 5 – Starting to Stand-by

 The other PLC is in Active state. The redundant data synchronization and the redundant forcing

list synchronization services are working correctly

Transition 6 – Inactive to Not-Configured

 This PLC was switched off or restarted (warm reset, cold reset or origin reset) or its CPU went to

Stop mode

 The STAND-BY button was pressed on the PX2612. Besides going to the Not-Configured state,

a configuration request is made. This way, the CPU goes out automatically from the Not-

Configured state for the Starting state. The user typically presses this button after repairing the
failure which has driven the CPU to the Inactive state

 This PLC has its synchronization disabled and the project is different from the Active PLC, at the

STAND-BY button pressing, the PLC goes from Inactive to Not-Configured

Transition 7 – Active to Not-Configured

 This PLC was switched off or restarted (warm reset, cold reset or origin reset) or its CPU went to

Stop mode

Transition 8 – Active to Inactive

 NX4010 module not detected in the bus, or its microprocessor failure. This CPU knows the other

CPU was in Stand-by state before this failure happened. This condition isn’t analyzed in the first
2 seconds in Active state

 This PLC has lost communication with another PLC through NETA and NETB due to an internal

failure but knows the other PLC was in Stand-by mode just before the failure occurred. This

condition isn’t analyzed in the first 2 seconds in Active state

 This CPU can’t control all PROFIBUS networks configured in vital fail mode and knows the

other CPU is in Stand-by state. This condition isn’t analyzed in the first 2 seconds in Active state.

 This CPU detected a total failure in Ethernet networks configured in vital failure mode, and

knows that the other CPU is in Stand-by state

Transition 9 – Active to Stand-by

 Both PLCs, for some reason, are in Active state and this conflict must be solved. The PLCA

switches to Stand-by state in case this conflict remains. The PLCB does the same after a delay
smaller than PLCA. This way, in this case, PLCA has priority to remain in Active state

 The STAND-BY button was pressed and this CPU knows the other CPU is in Stand-by state.

This condition isn’t analyzed in the first 2 seconds in Active state

Transition 10 – Stand-by to Not-Configured

 This PLC was switched off or restarted (warm reset, cold reset or origin reset)

 The other PLC is in Active state and it’s known this PLC project is different from the Active

PLC. Besides going to the Not-Configured state, a configuration request is made. This way, after

the projects synchronization, the PLC goes automatically from the Not-Configured state to the

Starting state. This condition isn’t analyzed if the project automatic synchronization is disabled (

Project Synchronization Disabling section)

 The other PLC is in Active state and firmware version of this PLC is incompatible with the

firmware version of the Active PLC

6. Redundancy with NX3030 CPU

 247

Transition 11 – Stand-by to Inactive

 NX4010 module not detected in the bus, or its microprocessor failure

 The INACTIVE button was pressed on the PX2612. This is made typically in order to execute a

programmed maintenance in the Non-Active CPU. Any programmed maintenance must be

avoided in the Stand-by CPU, thus is recommended to switch to Inactive mode

 The other CPU is in Active state. However the redundant data synchronization or the redundant

forcing list synchronization services haven’t worked in last four cycles of the MainTask or the

diagnostics synchronization service haven’t worked in the last two cycles of the MainTask

 The other PLC is in Active state. However, this PLC can’t monitor traffic in every PROFIBUS

network configured as vital fail mode

 The other CPU is in Active state, However, this CPU detected failure in Ethernet ports

configured as Vital Failure mode

Transition 12 – Stand-by to Active

 The other CPU state is unknown due to NETA and NETB failures. In this case, besides going to

Active state, for safety reasons, this CPU switches off the other CPU using the PX2612 relay.

When the Redundancy does not use PX2612 panel and there PROFIBUS DP this condition is not
generated the remaining CP in state reserve. In this condition the fault if it has been generated by

other CP, to regain control of the process is to run the command to pass the CP to the Idle state

and then the command to move the CP to the state reserve. When this sequence is performed this
CP will assume the Active

 The other CPU state is known and different than Active

First Instants in Active State

In the first 2 seconds in Active state, as already described in PX2612 Redundancy Command Panel
Functions section, the LED ACTIVE blinks and remains on after this time has passed.

While the LED ACTIVE blinks, several transitions which, usually, could take the CPU from the

Active state, aren’t analyzed (see previous sub-sections that define transitions from the Active state).

E.g. during this time, it doesn’t work to press the STAND-BY button to try and make the CPU go to
Stand-by state.

Only two conditions allow the CPU to go out of the Active state while the LED ACTIVE blinks.

They are the following

 This PLC was switched off or restarted (warm reset, cold reset or origin reset), causing a

transition to Not-Configured state.

 Both PLCs, for some reason, are in Active state and this conflict must be solved. The PLCA

switches to Stand-by state in case this conflict remains. The PLCB does the same after a delay

smaller than PLCA. This way, in this case, PLCA has priority to remain in Active state

Furthermore, in the very first instants that a PLC assumes the Active state, some non-redundant

diagnostics may not be valid, such the diagnostics of the NX5000 and NX5001 modules. The method

used to ignore the diagnostics possibly invalid is described in section Reading Non-Redundant

Diagnostics.

Common Failures which Cause Automatic Switchovers between Half-Clusters

In this section, the more common failures which, automatically, cause a switchover from the Active

CPU to Non-Active and from Stand-by CPU to Active CPU are listed. These failures trigger a sub-
group of those transitions examined in the Transition between Redundancy States section.

 Power supply fault in the Active CPU. It’s important that both CPUs have redundant power

supplies, in order to avoid that a power supply failure doesn’t affect the Stand-by CPU

 NX8000 power supply fault in the Active CPU

 Rack bus failure (NX9001, NX9002 or NX9003) in the Active CPU

 Failures in the NX3030 CPU from the Active CPU, such as:

6. Redundancy with NX3030 CPU

 248

o Watchdog

o Restart (reset warm, cold or origin)

o Stop
o Failure in the bus interfaces in one or both synchronization channels NETA and NETB

 Failures in the NX4010 from the Active PLC, such as:

o Not recognized module in the NX3030 CPU bus

o Failure in the NX4010 microprocessor which prevents the NETA/NETB and the PX2612
control panel (buttons, LEDs and relay) internal diagnostics updating

o Internal failures that affect one or both synchronization channels NETA and NETB

 Active PLC PROFIBUS network total failure, in case this network is configured in vital mode. In

case the PROFIBUS network is redundant, both composing networks must fail (double failure)

 Total failure of an Ethernet network in active CPU, if this network is configured with vital

failure. If the Ethernet network is redundant, both networks that compose it must be faulty
(double fault)

Failures Associated to Switchovers between Half-Clusters Managed by the User

Among the described transition in the Transition between Redundancy States section, some turn
possible the user to manage switchovers between half-clusters, due to failures that don’t generate

automatic switchovers.

There are very particularly cases which depend on the philosophy of each client. E.g.: a case where
the SCADA system loses the communication with the Active CPU, but keeps communicating with

the Stand-by CPU.

Some clients would rather to have a manual switchover, where the operator presses the PX2612

STAND-BY button, to the Active CPU. The switchover causes a communication retry with the new
Active CPU.

An alternative solution would be to cause a switchover by sending a command from the SCADA

system to the Stand-by CPU, which would transmit to the Active CPU through NETA/NETB, using
the RedCmdLocal (Stand-by CPU) and RedCmdRem (Active CPU) data structures to transport a

command equivalent to the PX2612 STAND-BY button.

It would be also possible the Active CPU detect its communication lost with the SCADA system

itself and to activate a command in the RedCmdLocal, equivalent to the PX2612 STAND-BY button.
This would be a totally automatic solution with no operator intervention that would be typically made

in the ActivePrg POU.

Through data structures described in the Diagnostics, Commands and User Data Structure section,
it’s possible to exchange diagnostics and commands between the half-clusters through NETA and

NETB. This way, the user can execute special redundancy managing for failures that normally

wouldn’t cause any switchover. Further details regarding these data structures are offered in the
following sections:

 Redundancy Diagnostics Structure

 Redundancy Commands

 User Information Exchanged between PLCA and PLCB

Below, is exemplified how the user can manage failures and execute a switchover due to an error in

the Ethernet interfaces from the Active PLC (this code should be used in the ActivePrg POU):

//Verify if NIC Teaming is enabled.

IF ((DG_NX3030.tDetailed.Ethernet.NET1.szIP = '0.0.0.0') OR

(DG_NX3030.tDetailed.Ethernet.NET2.szIP = '0.0.0.0')) THEN

//NIC Teaming enabled: error in two NETs to execute a switchover.

IF (DG_NX3030.tDetailed.Ethernet.NET1.bLinkDown AND

DG_NX3030.tDetailed.Ethernet.NET2.bLinkDown) THEN

//Change the local PLC to StandBy.

6. Redundancy with NX3030 CPU

 249

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal := TRUE;

END_IF

ELSE

//NIC Teaming disabled: error in one of NETs to execute a switchover.

IF (DG_NX3030.tDetailed.Ethernet.NET1.bLinkDown OR

DG_NX3030.tDetailed.Ethernet.NET2.bLinkDown) THEN

//Change the local PLC to StandBy.

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal := TRUE;

END_IF

END_IF

ATTENTION:

When two Ethernet interfaces form a NIC Teaming pair, the inactive interface will always have the

IP address 0.0.0.0. This isn’t a valid IP and is no possible to configure manually an interface with
this address.

Fault Tolerance

The main objective of a redundant CPU is the system availability increase. The availability is the

ratio between the time while the system is working properly and the total time since the system has
been implemented. For instance, if a system was implemented 10 years ago and during this time,

wasn’t working due to failures for a year, then its availability was only 90%. This kind of availability

is usually unacceptable for critic systems, where 99.99% availability is required, or even more.

In order to reach this availability level, several strategies are necessary:

 Utilization of more reliable components (with high MTBF or Mean Time between Failures),

contributing for the MTBF increase of the system as a whole

 Utilization of redundancy for, at least, the most critical components or components with smaller

MTBF, in such a way that a component failure can be tolerated without stopping the system. If

the redundancy is implemented through components duplication, it will be necessary that both
fail for the system as a whole become unavailable

 High diagnostics coverage, especially in redundant components. The component redundancy

isn’t very useful for the availability increase when is not possible to discover which component

failed. In this case, the first failure in one component still doesn’t drop the system, but remains
hidden, until the second failure occurs, dropping the system, as the first failure wasn’t yet

repaired. The failures can be classified between diagnosable and hidden. It’s strongly

recommended that all redundant components failures are diagnosable

 It’s also important that non-redundant components have wide diagnostics coverage, as,

frequently, the system can continue working even with a non-redundant component failure. The
component may not being requested, e.g. a relay with NO contact which rarely has its coil

activated, doesn’t have its failure detected until the moment the system requires its closing

 Low repair time for non-redundant components. A non-redundant component failure can drop the

system, and during the repair, the system will be unavailable

 Possibility of repairing or substituting a redundant component without stopping the system. If

this possibility exists, a great availability increase it got. Otherwise, a stop must be programmed

in order to substitute the component and the repair time is computed as unavailable time

 Low repair time for redundant components. A redundant component failure doesn’t drop the

system, but during its repair, a failure in its redundant pair could happen. For this reason, it’s
important that the failure is repaired quickly after diagnosed. The higher the repair time, the

higher the probability of a second failure to occur in the redundant component during this time,

what would drop the system. Therefore, the higher the repair time, the lower the system

availability

 Program periodic of-line tests in components in order to detect not automatically diagnosable

failures by the system. The objective is to detect hidden failures, especially in redundant

components or simple components which aren’t being requested (e.g. a security relay). Off-line

tests, sometimes, imply in system stopping what decreases the availability. Normally, special

6. Redundancy with NX3030 CPU

 250

situations, such as process programmed maintenance, are used for that purpose. The higher the

period between off-line testes, the higher the time which the failure may remain hidden, and the

higher the probability of a failure to damage the system, in other words, the smaller the
availability

These principles were considered in the redundant CPU project using NX3030.

The next sub-sections analyze several failure types and how they are tolerated or not, and if there are
switchovers associated to the tolerated failures.

Simple Failure with Unavailability

Some components, as they aren’t doubled, don’t even tolerate a simple failure without causing some

kind of unavailability. In a redundant CPU using CPU NX3030, this is related to the following
components:

 PROFIBUS remotes (slaves) in a non-redundant PROFIBUS network

 Ethernet remotes (slaves) in a non-redundant network

 I/O Modules

The failure intolerance of a non-redundant PROFIBUS network can be solved if a redundant

PROFIBUS network is used, which is advisable in systems that demand a high failure tolerance.
Figure 6-1 shows an example of a redundant PROFIBUS network architecture. Likewise intolerance

to failure of a non-redundant Ethernet network can be solved by using a redundant Ethernet network

configuration with NIC Teaming.

Regarding the I/O module unavailability, it must be observed that it doesn’t imply total system

unavailability. It constitutes a partial unavailability, only in the control mesh that uses this I/O

module.

Even though there’s no redundancy prevision for I/O modules, the user application can manage it in
special cases. E.g. the user can insert 3 analog input modules in 3 different PROFIBUS remotes, and

implement a vote scheme between analog inputs triples, for a critic system. However, as mentioned,

such solutions must be managed by the user. There’s no automatic support for them. Such solutions,
generally speaking, also imply in the field transducers and actuators redundancy.

Simple Failure without Unavailability Causing a Switchover

Some redundant components tolerate simple failures without causing unavailability, but do cause

switchover:

 Racks (NX9000, NX9001, NX9002 or NX9003).

 Power Supply (NX8000).

 CPUs (NX3030)

 NX4010 modules

 NX5001 modules (PROFIBUS masters) in non-redundant PROFIBUS network configuration

 NX5000 module (Ethernet) in configurations without NIC Teaming

 PROFIBUS slave interface in a redundant remote (PO5063V5, PO5065, NX5210 or AL-3416).

In this case, different from the previous, the switchover happens inside the remote, between the

PROFIBUS A and B networks

ATTENTION:
In case of failure of the CPU NX3030 or NX4010 module in architectures where panel PX2612 or

PROFIBUS network is not used, the CPU will remain in its current state. In this case, if the failure

occurs in the half-cluster active, system downtime occurs.

Double Failure without Unavailability Causing a Switchover

Some components are doubled in each half-cluster, this way, before causing a switchover, both must

fail:

6. Redundancy with NX3030 CPU

 251

 NX5001 modules (PROFIBUS masters) in redundant configuration, configured in vital failure

mode.

 NX5000 modules (Ethernet) in configurations with NIC Teaming (redundancy managed by the

user).

Redundancy Overhead

A redundant application implies on an application processing time increase, when compared to the

necessary time for a non-redundant equivalent application.

This additional time happens due to cyclic synchronization services execution, described in the
Cyclic Synchronization Services through NETA and NETB section, and a smaller time for the

redundancy management (state machines, etc.). The total additional time due to redundancy

(redundancy overhead) is estimated by MasterTool, after the redundant CPU project compiling.

ATTENTION:
MasterTool calculated overhead consider an empty redundant variables forcing list.

It’s up to the user to define a cycle time for the MainTask which includes:

 The additional redundancy time estimated by MasterTool

 The necessary time to execute the main POUs (NonSkippedPrg and ActivePrg). This time

usually is measured after the project development (with the redundancy additional time off)

 Some MainTask cycle looseness, for other CPU tasks execution (operational system, I/O

PROFIBUS drivers, Modbus, etc.). This looseness percentage can vary according to the
requested performance from these other tasks. E.g. if the MODBUS communication with the

SCADA system needs to allocate too much processing to reach a satisfying performance, this

looseness must be increased

ATTENTION:

Depending on the memory alignment, the number of bytes used in the redundancy overhead calculus

might be higher than the total amount of bytes declared in the variables.

Redundant CPU Programming

Wizard for a New Redundant Project Creation

In order to create a new redundant project, the File/New Project command must be used and the
Standard MasterTool Project selected.

Initially, the user must inform the desired name for the project and the directory where he desire to

save it, as shown on Figure 6-15:

6. Redundancy with NX3030 CPU

 252

Figure 6-15. New Project

Next, the Wizard which generates the redundancy project run some questions for the user, regarding
the desired configuration that must be answered successively.

The first point to be defined is the initial configuration for the half-cluster hardware:

 Select the CPU model: As the redundancy is implemented only in NX3030, it must be selected

by the user

 Select the rack model: There are three rack available models and the choice depends on the

module quantity used in the redundancy. For MasterTool is important the rack size according to

the configured networks quantity (next wizard item)

 Select the power supply model

 Select the redundancy configuration. For a redundant project is needed to choose With

Redundancy option

 Select the operation mode of redundancy. In this case the option in operation are with panel of

redundancy or without (PX2612)

 Select if the OPC communication option will work or don’t

 Select if will be used redundancy with bus expansion

6. Redundancy with NX3030 CPU

 253

Figure 6-16. Hardware initial configuration

After, the user must define the communication networks used in the redundant application:

 Select the number of PROFIBUS networks: By the Wizard, can be created up to four PROFIBUS

networks, and they can be single or redundant. It is important stress that this architecture

proposed by the Wizard is typical. After that, can be created more PROFIBUS networks,

respecting the maximum limit of four PROFIBUS Master modules, NX5001, in each half-cluster

 Choose the type of PROFIBUS networks:

o There’s none (no NX5001 module allocated)

o Single (allocates one NX5001 module)

o Redundant (allocates two NX5001 modules)

 Choose the type of Ethernet network of the CPU

o Single Network with Failure Mode Disabled (do not generates switchover in failure case)
o Single Network with Failure Mode Enabled (generated switchover in failure case)

o Redundant Network with Failure Mode Disabled (operates in conjunction with the other

interface and do not generates switchover in failure case)
o Redundant Network with Failure Mode Enabled (operates in conjunction with the other

interface and generates switchover in failure case)

 Choose the amount of Ethernet networks: In this case the Wizard allows the user to create up to

four single networks, or up to three redundant networks, or none. It’s important to stress that this
is only the architecture proposed by the Wizard. After that, MasterTool allows the creation up to

six networks total (three redundant maximum), always respecting the maximum limit of six

Ethernet modules, NX5000, in each half-cluster.

 Select the Ethernet network type:

o There’s none (no NX5000 module allocated)
o Single Network with Failure Mode Disabled (allocates one NX5000 and do not generates

switchover in failure case)

o Single Network with Failure Mode Enabled (allocates one NX5000 and generates switchover
in failure case)

o Redundant Network with Failure Mode Disabled (allocates two NX5000 and do not generates

switchover in failure case)

o Redundant Network with Failure Mode Enabled (allocates two NX5000 and generates
switchover in failure case)

6. Redundancy with NX3030 CPU

 254

Figure 6-17. Communication networks configuration

Then the project profile and the standard language must be selected for the program creation:

 Select the project profile: It’s only possible to use the simple project profile for the redundancy;

hence the selection option is disabled

 Select the standard language for all programs: The language selected by the user is the standard

for all programs, but any other can be used for a specific POU

Figure 6-18. Project profile and standard language

To finish, the user must select the program language common and associated to the redundancy:

 Program associated to the MainTask (MainPrg): It must be, obligatory, in ST language, as

MasterTool disables the other options

 Programs associated to the main redundancy tasks

6. Redundancy with NX3030 CPU

 255

Figure 6-19. Specific programs language

ATTENTION:

The ActivePrg and NonSkippedPrg POUs are created automatically, empty, in language selected on
the previous questions. Other POUs which are created manually by the user can be used in any

available language, except in redundant POUs which can’t be written in SFC language as it uses the

IEC timer as background. For further information see Limitations on a Redundant PLC
Programming.

ATTENTION:

The MainPrg POU will always be automatically generated in ST language, and cannot be changed

by the user. This POU calls the ActivePrg (only in the Active PLC) and NonSkippedPrg (in both
PLCs) POUs.

After receiving the answers for the previous questions, the Wizard generates the main project,

defining a half-cluster with the following initial hardware configuration:

 Selected rack

 Power supply NX8000 (positions 0 and 1)

 NX3030 CPU (positions 2 and 3)

 NX4010 modules (positions 4 and 5) and Panel PX2612 if selected

 After the NX4010 module, NX5001 are inserted to implement PROFIBUS network with the

features previously inserted by the user

 After the NX5001 modules, NX5000 are inserted to implement Ethernet network with the

features previously inserted by the user

6. Redundancy with NX3030 CPU

 256

Half-Clusters Configuration

The Wizard is always used to generate the first version of a redundant project. This guarantees the

initial version is generated quick and correctly.

However, it’s possible that some modifications are necessary in a half-cluster, such as the insertion of

new NX5001 and NX5000 modules that can be executed changing the half-cluster configuration

screen. The following chapters present how to insert and configure the modules NX5000, NX5001
and NX4010.

Some rules and precautions must be followed for a redundant project, as described in the following

sub-sections.

Fixed Configuration in the 0 to 5 Rack Positions

In the 0 to 5 positions of the selected rack, the following modules must be always installed:

 Power supply NX8000 (positions 0 and 1)

 NX3030 CPU (positions 2 and 3)

 NX4010 module (positions 4 and 5)

These modules must not be removed from the original project generated by the Wizard.

Any different configuration in these positions results in an error displayed by MasterTool at the
project compilation.

Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)

IP Address Configuration

Figure 6-20 presents the CPU NX3030 NET 1 port configuration (the screen for NET 2 port

configuration has a subgroup of these parameters). In order to open this screen, a double click must

be executed on NET 1 or NET 2, below the CPU NX3030 in the device tree.

Figure 6-20. Ethernet NET 1 port parameters

Next the basic parameters of the NET 1 and NET 2 interfaces must be edited. The address has to be

set according to the IP Active Change method, as described in Active IP.

ATTENTION:
The NET 1 and NET 2 interfaces IP addresses, as the Gateway Address, must belong to the same

subnet.

6. Redundancy with NX3030 CPU

 257

ATTENTION:

The NET 2 configuration screen has the same structure as the NET 1 configuration screen, but it

doesn’t have the checkbox “Redundancy”, neither the NIC Teaming configuration parameters.

NIC Teaming between NET 1 and NET 2

The advanced option on the NET 1 configuration screen opens a new configuration screen, which

defines if NET 1 will be redundant. In case the checkbox for Redundancy of Communication is

marked, the NET 1 and NET 2 interfaces form a redundant pair with NIC Teaming, as described in
the Redundant Ethernet Networks with NIC Teaming section.

Automatically, other parameters are enabled and must be configured:

 Redundancy Test Period (ms): Period to transfer the communication test frame between the two

NETs. It can be configured with values between 100 and 9900

 Retries of Redundancy Test: Maximum number of times the NET, which has sent the frame, will

wait for an answer. It can be configured with values between 1 and 100

 Switching Period (s): Maximum time the Active NET will wait for any package. It can be

configured with values between 1 and 25

Figure 6-21. Ethernet advanced configuration

In case the answer time for the Redundancy Test reaches the Test Period times the Number of Retries

and the active interface remains for a while longer than the Switching Period without receiving any
package, a switchover will occur, turning active the interface that was inactive. It is important to

stress that there is a delay between the failure detection and the activation of the inactive interface,

due to the time necessary to interface configuration. This delay could be up to a few dozens of
milliseconds.

When one of the NETs is active, it assumes the IP address configured, and the inactive NET remains

with its configured IP address parameters, Subnet Mask and Gateway Address blank in the CPU

diagnostics.

ATTENTION:

When a Reset Origin is performed in a CPU configured with NIC Teaming enabled for local

Ethernet interfaces (NET1 and NET2), only the last active interface before the reset will be
accessible. After the reset command, the accessible interface could be viewed in the CPU’s

Informative and Configuration Menu.

Vital failure setting in NET 1 and NET 2

The Advanced option in the setup screen of the NET 1 interfaces and NET2, opens a configuration
screen where in addition to enable communication redundancy is also possible to configure if the

interface will generate a switchover in case of failure as described in Ethernet Interfaces Use with

Vital Fault Indication.

6. Redundancy with NX3030 CPU

 258

When configured in conjunction with the NIC Teaming redundancy, failure is considered vital

failure, when a fault occurs in NET1 and NET2 interfaces.

NX5001 Modules Configuration

Insertion or Removal of NX5001 modules

NX5001 modules can be inserted or removed from the half-cluster rack. To execute this operation

correctly, one must be aware of the following rules:

 The number of NX5001 modules in each half-cluster may vary between zero and four

 It can be defined up to 4 simple PROFIBUS networks or 2 redundant PROFIBUS networks,

respecting the limit of 4 PROFIBUS Master NX5001 modules in each half-cluster

 When a PROFIBUS network is simple, it needs a single NX5001 module in each half-cluster.

When it’s redundant, it needs 2 NX5001 modules in each half-cluster

 Two NX5001 modules used to form a redundant PROFIBUS network must occupy side by side

positions in the rack

 The NX5001 modules quantity in the rack must be compatible with the number of existent

PROFIBUS networks and with the redundancy attribute of each network, on other words:

o 0 x NX5001: No PROFIBUS network

o 1 x NX5001: One simple PROFIBUS network

o 2 x NX5001: In this case there are two options:

 Two simple PROFIBUS network

 One redundant PROFIBUS network

o 3 x NX5001: In this case there are two options:

 Three simple PROFIBUS networks

 One redundant PROFIBUS network and one simple PROFIBUS network

o 4 x NX5001: In this case there are three options:

 Four simple PROFIBUS networks
 One redundant PROFIBUS network and two simple PROFIBUS networks

 Two redundant PROFIBUS networks

After inserting or removing the NX5001 modules, the configuration of the NX5001 modules
remaining in the rack must be checked.

NX5001 Modules Parameters Adjust

Each NX5001 module used in a simple PROFIBUS network, or each redundant pair of NX5001 used

in a redundant PROFIBUS network, has the following parameters to be adjusted.

6. Redundancy with NX3030 CPU

 259

Figure 6-22. NX5001 redundancy parameters

For grouping two NX5001 modules in a redundant PROFIBUS network, a double click must be

executed on an ungrouped NX5001 module which has another ungrouped NX5001 module at its

right in the rack. Next the parameter “Network Redundancy”, available at the tab “Module
Parameters”, must be marked as TRUE, as shown on the Figure 6-22. In order to ungroup it, the same

procedure must be followed, but marking the parameter as FALSE. If this parameter is marked as

TRUE, the DP parameters and the NX5001 parameters at its right are blocked for edition.

ATTENTION:
In case of redundant networks, only the parameters of the NX5001 to the far left on the bus must be

adjusted, while the NX5001 at the right remain blocked for edition. Some network parameters are

identical to the other network while others are calculated automatically from network parameters of
the left NX5001.

It’s recommended for the configured address for a NX5001 master in a redundant PLC to be 2, as the

master NX5001 address in the Non-Active PLC is decremented one unit, thus the NX5001 master

address results 1.

Besides that, it’s important to remember:

 The addresses from 3 to 125 are usually used for PROFIBUS slaves

 The 0 addresses are frequently used for device configuration and diagnostics

 The address 1 is reserved to be taken, dynamically, by the PROFIBUS master in the Non-Active

PLC (PROFIBUS master in passive mode)

 The 126 address is frequently used for slave devices when comes from the manufacturer

 The 127 address is used for broadcast frames

In the next project compilation, MasterTool check the possible errors the user may have made at
inserting or removing NX5001 modules manually.

Important to note that during the execution of a project previously configured with redundant

NX5001 modules, bit 0 Command (Channel Enable Interface% QXn.0 at Bus tab: I/O Mapping) is

handled by the redundant application. The interfaces must remain qualified throughout the program.

6. Redundancy with NX3030 CPU

 260

Thus, a command run by the user to disable an interface will not run the way it’s expected. For

example, if an interface has the status of this bit changed from TRUE to FALSE on an active CPU,

this will not be interpreted as a failure that would take the CPU Active for the Inactive state. In this
case, the CPU will remain in active and the other CPU that will go to the inoperative state. For these

reasons, this command bit should not be manipulated by the user in a redundant application.

For further information regarding PROFIBUS networks configuration, see PROFIBUS-DP NX5001
Utilization Manual.

PROFIBUS Remotes Configuration

To configure PROFIBUS remotes under a NX5001 master, the PROFIBUS-DP NX5001 Master

Utilization Manual must be consulted, together with the following manuals:

 Ponto Series Utilization Manual

 PROFIBUS PO5063V1 Head Utilization Manual and Redundant PROFIBUS PO5063V5 Head

 PROFIBUS PO5064 Head Utilization Manual and Redundant PROFIBUS PO5065 Head

 HART over PROFIBUS Network Utilization Manual

For a redundant system we must pay attention to the configuration of the watchdog parameter from

the PROFIBUS remote. In case that, in the remote configuration screen, the “Watchdog control”

checkbox is checked, the “Time” field needs to be correctly configured. There are two options to
configure the Time and we must use the bigger time between:

 WT ≥ I x 2 + 500ms; and

 WT ≥ I x 3;

Where WT is the watchdog time and I is the MainTask configured interval.

Figure 6-23. Watchdog Configuration of a PROFIBUS Remote

NX5000 Modules Configuration

NX5000 Modules Insertion or Removal

NX5000 modules can be inserted or removed from the half-cluster rack. To execute this operation

correctly, one must be aware that the number of NX5000 modules in each half-cluster can vary
between zero and six. Care must be taken to the fact that modules which form a redundant NIC

Teaming pair must be inserted in side by side positions in the rack.

In the next project compilation, MasterTool check the possible errors the user may have committed at
inserting or removing NX5000 modules manually. For instance, if the user inserted more than 6

NX5000 modules, an error occurs.

The interface of each module will be identified as NET 1, as they are identified physically on the
product. In case the user adds manually NX5000 modules in the bus, the identification occurs the

same way as the Wizard.

After inserting or removing the NX5000 modules, the configuration of the NX5000 modules

remaining in the rack must be checked.

6. Redundancy with NX3030 CPU

 261

NX5000 Modules Configuration

For each NX5000 module in a redundant PLC, the address parameters must be adjusted as described

in the IP Change Methods section, which can be accessed through a double click on the NET 1
interface, below each NX5000 module placed on the devices tree.

ATTENTION:

In case two consecutive modules form a redundant NIC Teaming pair, only the basic parameters of

the left NX5000 should be edited, the right NX5000’s parameters edition will be blocked.

NX5000 Modules Grouping with NIC Teaming Redundancy

The NX5000 modules, as the CPU NX3030 and NX3020 NET 1 interface, present a screen of

advanced configuration which defines if the module forms a redundant NIC Teaming pair with the

module at its right. The configuration is made as described in the NIC Teaming between NET 1 and
NET 2.

To group two NX5000 modules with a redundant pair, the following conditions must be true:

 Both NX5000 modules must be inserted in close positions in the rack.

At doing this the right module has its parameters edition blocked and the left module parameters turn
to be the same to both modules.

Unmarking the checkbox “Redundancy of Communication” at the left module causes the modules’

separation, making them behaves as individual modules without NIC Teaming redundancy again.

Failure Vital Setting
The NX5000 modules as well as the NET 1 and NET 2 interfaces allow you to configure if the

interface will generate a switchover in case of failure, as described in Ethernet Interfaces Use with

Vital Fault Indication When configured in conjunction with the NIC Teaming redundancy vital
failure will be considered when failure occurs in both modules of the redundant pair.

NX4010 Redundancy Configuration

The configuration regarding the %I, %Q and %M redundant variables can be accessed through a
double click on the NX4010 module, following the selection of the tab “Redundancy Parameters”.

To understand these parameters the sections Redundant and Non-redundant %I Variables, Redundant

and Non-redundant %I Variables and Redundant and Non-redundant %I Variables must be read.

The following parameters must be configured:

Configuration Description Default Options

Redundancy %M

memory offset

Memory (%M)

Redundant %M

memory initial address
0 0 (disabled)

Redundancy %M
memory length

Redundant %M
memory size

0 0 to 65536

Redundancy %I

memory offset

Memory (%I)

Redundant %I memory

initial address
0 0 (disabled)

Redundancy %I

memory length

Redundant %I memory

size
16384 0 to 81920

Redundancy %Q

memory offset
reserved for I/O

drivers

Memory (%Q)

%Q redundant memory

offset reserved for I/O
drivers initial address

0 0 (disabled)

Redundancy %Q

memory length
reserved for I/O
drivers

%Q redundant memory

offset reserved for I/O
drivers size

16384 0 to 81920

Redundancy %Q %Q redundant memory 65536 0 to 81919

6. Redundancy with NX3030 CPU

 262

memory offset

reserved for
diagnostics

offset reserved for

diagnostics initial
address

Redundancy %Q
memory length

reserved for
diagnostics

%Q redundant memory

offset reserved for
diagnostics size

16384 0 to 81920

Table 6-3. NX4010 parameters

I/O Drivers Configuration

The configuration of I/O drivers, at first, isn’t different in relation to a non-redundant CPU.

What can be observed is that some I/O drivers have commands which allow its use in a redundant
CPU, but it doesn’t imply in configuration differences. These commands, normally, must be executed

in the NonSkippedPrg program. E.g. a MODBUS RTU master driver in a RS-485 serial network

must be disabled in a non-Active CPU using the code inserted by the user in NonSkippedPrg. More
information regarding administration of MODBUS driver in a redundant system can be found in the

MODBUS Instances Managing in Redundant System section.

In the case of PROFIBUS network, there are also special different commands for the CPUs in Active

and Non-Active states. In this case, however, the redundancy management executes such commands
automatically, without any user management.

To configure PROFIBUS I/O remotes, including remotes and I/O modules, see NX5001 Modules

Configuration section from this manual.

MainTask Configuration

The configuration screen associated to the only task of a redundant CPU, called MainTask, which is

cyclic, can be accessed through a click on the MainTask in the Device Tree.

Two parameters must be adjusted on this screen:

 The MainTask cycle time

 Watchdog time

Furthermore, the screen shows an estimative of the necessary time to manage the redundancy,

calculated by MasterTool. Such estimative is only reliable after the project is complete, with all

POUs developed and redundant memory areas defined.

Several considerations must be taken in order to adjust correctly the MainTask cycle time:

 The cycle time must be sufficiently low to allow the proper process control, taken in account all

control feedback times

 The cycle time must be high enough for allowing, at least, the sum of the following times:

o The NonSkippedPrg and ActivePrg POUs maximum execution time, together
o The necessary time to manage the redundancy (redundancy overhead)

 Besides this, the cycle time must have an additional looseness necessary for the other processes

execution times (PROFIBUS communication, Ethernet communication with SCADA systems,

etc.)

MasterTool has conditions of calculating the necessary time for redundancy management
(redundancy overhead), after the project is finished (all developed POUs and redundant memory

areas defined).

Regarding the NonSkippedPrg and ActivePrg POUs execution maximum time, they are possible to
be measured after these POUs are already developed. Initially, MasterTool estimates 10ms for these

two POUs maximum time, together, but the user must revise this field afterwards, when measuring

using the final project.

6. Redundancy with NX3030 CPU

 263

After each compilation, MasterTool sums the redundancy overhead calculated with the parameter

which informs the POU times (NonSkippedPrg and ActivePrg), and verifies is the minimum

looseness parameterized is being obeyed.

E.g.:

 Parameters configured in the MainTask screen:

o MainTask cycle time: 100 ms

o POUs NonSkippedPrg + ActivePrg estimated time: 10 ms
o Minimum tolerance: 30%

 calculated Overhead for redundancy: 50 ms

In this case, the total time used is 60ms (10 ms + 50 ms), which consists in 60% of the MainTask

cycle (100ms). This way, the maximum looseness is 40% and the minimum looseness of 30% is

being respected.

ATTENTION:

A compilation error is produced in case the minimum looseness isn’t respected, if it is configured in

the CPU Project Parameters..

ATTENTION:

The compilation being successful or not, MasterTool informs the calculated looseness and the

redundancy overhead predicted on the message window

ActivePrg Program

In this POU the user must create the main application, responsible for its process control. This POU

is called by the main POU (MainPrg), being executed only in the Active CPU.

The user can also create additional POUs (program, function or function block), and call or instance

them inside the ActivePrg POU, in order to structure his program. It’s possible to call functions and
instance function blocks defined in libraries, too.

It must be remembered that all symbolic variables defined in the ActivePrg POU, as the instances of

function blocks, are redundant variables.

Symbolic variables defined in additional POUs from the program type which are called inside the

ActivePrg, are also redundant variables.

ATTENTION:

Variables from the type VAR_TEMP must not be used in the redundant program.

NonSkippedPrg Program

This POU is used for controls which must be executed in both CPUs (PLCA and PLCB),

independent on the redundancy state. This POU is also called by the main POU (MainPrg).

It must be remembered that all symbolic variables defined in the NonSkippedPrg POU, as well as the
function blocks instances, are non-redundant variables.

The user must create additional POUs (program, function or function block), and call or instance

them inside the NonSkippedPrg POU, in order to structure his program. It’s possible to call functions
and instance function blocks defined in libraries, too.

6. Redundancy with NX3030 CPU

 264

ATTENTION:

It must be avoided to call additional POUs from the program type inside the NonSkippedPrg, as

symbolic variables declared in this type of POU are redundant, and inside the NonSkippedPrg it’s
normally desirable non-redundant variables. Usually the NonSkippedPrg code is small and doesn’t

need to call additional POUs from the program type for its structure. If the NonSkippedPrg structure

is needed, function blocks or functions must be used.

Typical examples of controls executed in the NonSkippedPrg are the following:

 To create a compact diagnostics structure (%Q) to be reported to a SCADA system, from a

complete diagnostics structure, where many diagnostics are not interesting for the SCADA

system. These diagnostics can be extracted from data structures as RedDgnLoc, RedDgnRem,

RedUsrLoc, RedUsrRem, etc.

 To copy commands received from a SCADA system for the respective data structure

RedCmdLoc fields, and interconnect these commands if necessary

 To manage switchovers controlled by the user, in case of not vital failures such as the

communication with a SCADA system or with a MODBUS device

 Enable and disable some specific I/O drivers, depending on the redundancy state (Active or Non-

Active). E.g. a MODBUS RTU master driver in a RS-485 bus must be disabled in the Non-

Active CPU. For further information see MODBUS Instances Managing in Redundant System
section

ATTENTION:

It’s not recommended to use function blocks TOF_RET, TON_RET, TOF and TON in the

NonSkippedPrg program. See Limitations on a Redundant PLC Programming.

Redundancy Configuration Object

This object, located in the device tree, is automatically created by the Wizard. It is used to determine

which POUs and GVLs are redundant, and therefore synchronized between CPs. By default, POUs

and GVLs created by the user are marked as redundant, leaving the option to the user to reverse the
marking when needed.

ATTENTION:

PV, PIDControl and PidRetainGVL objects can't be individually marked. In case of need to
modification, the Select All option must be marked.

GVL Diagnostics

This special GVL is created and filled automatic by the Wizard and can’t be modified by the user.

System diagnostics and commands, including redundancy data structure (RedDgnLoc, RedDgnRem,
RedCmdLoc, RedCmdRem), are placed within direct representation special variables %Q or %I.

The SystemAT_GVL has many sentences with the AT keyword to define symbolic names for these

diagnostics and commands. This way, when the user needs to reference these variables, he can use a
symbolic name instead a numeric reference.

GVLs with Redundant Symbolic Variables

The user can create other GVLs different from the previously listed, in order to declare redundant

symbolic variables. For that, after the GVL creation, it’s necessary to mark it in the object
configuration Redundancy Configuration, in the project devices tree. By default, all GVLs created by

the user are, initially, redundant.

ATTENTION:

For good practice it’s recommended to avoid the AT directive use in GVLs which have redundant
symbolic variables declaration to prevent variable mapping in non-redundant areas.

6. Redundancy with NX3030 CPU

 265

POUs from the Program Type with Redundant Symbolic Variables

The user can declare redundant symbolic variables in POUs from the program type, with exception of

the NonSkippedPrg POU where the symbolic variables declared are considered redundant.

In order to define a new POU as redundant, it must be marked in the Redundancy Configuration

object after its creation, in the project devices tree. By default, all POUs created by the user are,

initially, redundant.

ATTENTION:

For good practice it’s recommended to avoid the AT directive use in POUs which have redundant

symbolic variables declaration to prevent variable mapping in non-redundant areas.

Breakpoints Utilization in Redundant Systems

For redundant systems it’s recommended to use breakpoints only in the Active half-cluster, with the
other half-cluster deactivated. If not, when the application execution reaches a breakpoint, the Stand-

by breakpoint will take over the Active state, switching off the Active PLC.

MODBUS Instances Managing in Redundant System

The MODBUS instances are independent from the redundancy, thus they must be managed in the

application, when it’s up to the user to choose which instances must be enabled/disabled when a PLC

goes to Non-Active state.

The example below, inserted in a NonSkippedPrg program, executes the verification of the PLC

current state and in case it’s in Non-Active state, disables the MODBUS RTU instances master and

slave and the MODBUS Ethernet Server instance:

VAR

eRedStateLocal : REDUNDANCY_STATE;

eRedStateLocal_old : REDUNDANCY_STATE;

END_VAR

// Local PLC current state reading

eRedStateLocal := DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.eRedState;

// Has the local PLC state changed?

IF eRedStateLocal <> eRedStateLocal_old THEN

IF eRedStateLocal = REDUNDANCY_STATE.ACTIVE THEN

// The local PLC has entered the Active state

Diagnostics.DG_MODBUS_RTU_Slave.tCommand.bRestart := TRUE;

Diagnostics.DG_MODBUS_RTU_Master.tCommand.bRestart := TRUE;

Diagnostics.DG_MODBUS_Server.tCommand.bRestart := TRUE;

ELSE

// The local PLC has entered the Not Active state

Diagnostics.DG_MODBUS_RTU_Slave.tCommand.bStop := TRUE;

Diagnostics.DG_MODBUS_RTU_Master.tCommand.bStop := TRUE;

Diagnostics.DG_MODBUS_Server.tCommand.bStop := TRUE;

END_IF

// Saves the last state of the local PLC

eRedStateLocal_old:= eRedStateLocal;

END_IF

Limitations on a Redundant PLC Programming

On a redundant PLC there are some limitations regarding its half-cluster programming. These

limitations are treated in the subsections below.

6. Redundancy with NX3030 CPU

 266

Limitations in Redundant GVLs and POUs

In a redundant GVL or a POU from the program type the following limitations must be respected for

a correct functioning of the half-clusters:

 Do not use variables from the type VAR_TEMP

 Do not mix variable types (VAR, VAR_RETAIN, VAR_PERSISTENT, etc.). Only one type

must be used in each GVL or POU

 Do not mix symbolic variables declaration with ATs in the GVLs. Separate GVLs must be

created where in one the AT variables will be declared and in another, the symbolic variables

 Do not store a variable address in a redundant variable (use a redundant variable as a pointer), as

the variable addresses may be different in the PLCA and PLCB

 Do not use the function blocks for RTC reading and writing in redundant POUs. More details can

be found on the chapter RTC Clock

Non-redundant Program Limitations (NonSkippedPrg)

In a POU from the program type which aren’t redundant, the case of a NonSkippedPrg POU, the

following limitations must be respected for a correct functioning of the half-clusters:

 The traditional function blocks TON and TOF can’t be used as they use the IEC timer. When the

Stand-by PLC goes to Active state (with the other half-cluster coming out of Active state), the

IEC timer is synchronized, causing a discontinuity in the timer value. The function blocks

TON_NR and TOF_NR must be used instead, available in the NextoStandard library. See
Configuration – Non-Redundant Timer

 POUs from the program type written in the SFC language (Sequence Function Chart) must not be

used, as they use the IEC timer for transition timing

 Do not mix symbolic variables declaration with ATs in the GVLs. Separate GVLs must be

created where in one the AT variables will be declared and in another, the symbolic variables

Getting the Redundancy State of a Half-Cluster

It is possible to verify the redundancy state of a half-cluster in the Redundancy Diagnostics Structure:

VAR

eRedStateLocal : REDUNDANCY_STATE;

END_VAR

eRedStateLocal := DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.eRedState;

This way, the user can control a program logic that depends on redundancy state of the PLC.

Reading Non-Redundant Diagnostics

A redundant project, besides present redundant diagnostics (Redundancy Diagnostics Structure or the

diagnostics from a PROFIBUS remote), presents also non-redundant diagnostics (diagnostics from

the modules NX5000, NX5001, NX3030, etc.). These non-redundant diagnostics could be invalid
and must not be considered at the first instants in Active state, as they aren’t synchronized with the

other PLC (the diagnostic state when the remote PLC was active is unknown). Therefore, these

diagnostics must be ignored during the first moments in Active state, until they have valid values.

Typically the time during which the diagnostics should not be considered is 5 s.

The example below shows how to not consider the diagnostics bSlaveNotPresent and

bPbusCommFail from the NX5000 PROFIBUS Master module:

Logic in NonSkippedPrg:

PROGRAM NonSkippedPrg

VAR

TON_DiagEnable : TON_NR;

bDiagEnable : BOOL;

bIsActiveState : BOOL;

6. Redundancy with NX3030 CPU

 267

bIsActiveState_old : BOOL;

END_VAR

bIsActiveState := (DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.eRedState

= REDUNDANCY_STATE.ACTIVE);

TON_DiagEnable(IN:= (bIsActiveState = bIsActiveState_old), PT:= T#5S, Q=>

bDiagEnable);

bIsActiveState_old := bIsActiveState;

Logic in ActivePrg:

IF NonSkippedPrg.bDiagEnable THEN

IF DG_NX5001.tGeneral.bSlaveNotPresent OR

DG_NX5001.tGeneral.bPbusCommFail THEN

//Actions executed when the diagnostics are active

END_IF

END_IF

Redundant CPU Program Downloading

The Redundant CPU Programming section described issues related to the development of a project

for a redundant CPU with NX3030 CPU.

In this section, many methods and steps to download this project in a redundant CPU are described,

considering situations such as:

 Downloading the project in a brand new NX3030 CPU or in a CPU with an unknown project

 On-line modifications downloading

 Off-line modifications downloading with the process control interruption, during a programmed

process stopping

 Off-line modifications downloading without the process control interruption, using redundancy

features

Initial Downloading of a Redundant Project

This section describes the necessary steps to run the first download of a redundant project in a
NX3030 CPU. This is necessary, for instance, for a brand new CPU recently manufactured, or for a

CPU that has an unknown project.

ATTENTION:

The following steps must be executed for both half-clusters (PLCA and PLCB) which compose a
redundant CPU. First all steps must be executed for one CPU and then for the other.

First Step – IP Address Discovering for MasterTool Connection

The first step is to discover the IP address from the NET 1 channel in this CPU, for MasterTool

connection.

This must be done through NX3030 CPU display and button, as described in the Configuration –

CPU’s Informative and Configuration Menu chapter. The NETWORK menu informs the IP address

which can be used for MasterTool connection.

Second Step – Verifying IP Addresses Conflict

Before executing the third step, one must be sure there’s no other equipment with the same IP

address connected to the network, discovered in the first step. This can be discovered, for instance,

disconnecting the CPU from the network and executing a “ping” in its IP address. As the CPU is
disconnected from the network, the “ping” function must fail. If not, there’s equipment with the same

IP address.

6. Redundancy with NX3030 CPU

 268

In case the IP address is already being used by equipment in the network, the third step must be

executed, and some of the following steps too, using a crossover cable to connect MasterTool to the

CPU, avoiding IP addresses conflict. In one of the following cases, at downloading the project in the
CPU, the definitive IP addresses are updated in it (see Ethernet Ports Configuration in the CPU

NX3030 (NET 1 and NET 2) section).

Third Step – Preparing MasterTool Connection (Set Active Path)

The third step consists in double-clicking on the Device (NX3030 PLC) in the Device Tree, getting

in the tab “Communication Settings”, clicking on the Gateway, and pressing the “Scan Network”

button to list all CPUs detected by MasterTool in the network.

At this moment, a CPU whose identification has the IP address found in the first step is supposed to
appear. In case the user has changed the network CPU name previously, this name will be visualized.

MasterTool Connection with a NX3030 CPU from a Redundant PLC section describes with more

details the possible identifications which can be observed on this list. Anyhow, all possible
identification has a field showing the IP address or part of it.

For instance, the bytes between square brackets form the CPU address. The right byte inside the

brackets, indicate the IP address end in hexadecimal. If the bytes form the address [0010], this means

the byte with value “10” indicates that the CPU IP address end is xxx.xxx.xxx.16. Next, the CPU in
the list must be clicked and the “Set active path” button pressed. This done, the selected CPU must

appear stressed on the list, indicating MasterTool is prepared to connect to this CPU.

Forth Step – Identifying the NX3030 CPU and Verifying the CPU Display

The forth step consists in identifying the half-cluster as PLCA or PLCB. This is made through the

Online / Cluster Basic Configuration menu:

Next, the combo-box “PLC Identification” allows selecting one out of the three following options:

 PLC A

 PLC B

 Non-Redundant

Figure 6-24. PLC Identification

In case of a redundant CPU, the user must select PLCA or PLCB. After selecting the desired option,

the “Write” button correspondent to this combo-box must be pressed. MasterTool returns a message

indicating command success or failure, after the Button is pressed. MasterTool returns a message
warning that the CPU will be restarted and waits for the user to confirm the action. Then a message

indicating command success or failure will appear. If there’s success the CPU will be restarted.

6. Redundancy with NX3030 CPU

 269

ATTENTION:

The NX3030 CPU can’t be in Run mode when this command is executed. Before executing this

command, the user must put the CPU to Stop mode. In case the CPU is in Run mode, the command
isn’t executed and MasterTool warns the command has failed.

Just after executing the identification command with success, it can be observed that the selected

identification appears on the Redundancy Diagnostics on the NX3030 CPU Graphic Display.

The CPU identification is also available in an internal diagnostic
(DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.ePLC_ID). This diagnostic is updated from

the non-volatile memory each MainTask cycle, so it’s necessary for the CPU to go back to Run mode

to update it. The codes returned by the diagnostics and their respective limitations are listed below:

 Non-Redundant: 0

 PLCA: 2

 PLCB: 3

The CPU identification isn’t part of the redundant project developed with MasterTool. Such
identification is only in a CPU non-volatile memory area, which can be modified using MasterTool.

CAUTION:
The redundancy doesn’t work properly in case one of the CPUs isn’t identified as PLCA and
the other PLCB, when a process control interruption may occur. In case one NX3030 CPU
must be replaced (e.g. after a damage), the new CPU must be previously identified with the
same identification of the damaged one. The CPU display must be used to verify if both CPUs
are correctly identified.

Fifth Step – Redundant Project Downloading

This step describes the redundant project downloading in the CPU. This project must be prepared

according to the Redundant CPU Programming section.

A simple project (basic) can be prepared following, at least, the next sub-sections presented in this
section:

 Wizard for a New Redundant Project Creation

 Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2).

Obviously, it’s also possible to build a complete project and only later download it in the PLCA and

PLCB, for instance, in case these CPUs hardware aren’t available during the project developing in
MasterTool.

The first download of a redundant project in a CPU, previously identified as PLCA or PLCB, still

must be done using the IP address discovered in the first step, and selecting the third step of this
procedure.

The project download is run through the Online / Login menu.

ATTENTION:

Inside the developed project using MasterTool and downloaded in the CPU in this step, were defined
new IP addresses for the NET 1 interface in the PLCA and PLCB (IP_A_1 and IP_B_1), as well as a

IP address for the NET 1 interface in the Active CPU (IP_Active_1) – see Ethernet Ports

Configuration in the CPU NX3030 (NET 1 and NET 2) section.

Therefore, after this first download, the IP address discovered in the first step of this procedure

usually isn’t valid anymore. This IP Address change in NET 1 causes a connection loss between

MasterTool and the CPU, which is showed on the screen.

For further details regarding MasterTool reconnection, see MasterTool Connection with a NX3030

CPU from a Redundant PLC section.

6. Redundancy with NX3030 CPU

 270

MasterTool Connection with a NX3030 CPU from a Redundant PLC

After executing the procedure described in the Initial Downloading of a Redundant Project section in

both PLCs (PLCA and PLCB), MasterTool connection, through the NET 1 interface from NX3030
CPU can be made through one of the following addresses:

 PLCA IP address: NET1 address exclusive for PLCA

 PLCB IP address: NET1 address exclusive for PLCB

Independent from the PLC state, MasterTool can only connect to it using the PLC exclusive address,

configured in PLCX IP Address. But in case the PLC is in Active state, all other services can connect
to it either by the PLCX IP address or by the Active IP address.

To connect to a specific CP, at first a double-click must be done on the Device (NX3030 CPU) in the

Device Tree, go into “Communication Settings” tab, click on the Gateway and press “Scan Network”

button to list all PLCs detected by MasterTool in the network.

On this list it’s possible to find the following standard identifications, in case the PLC name on the

network hasn’t been changed previously by the user:

 NX3030_<IP address>_PLCA: identification related to the PLCA. In this case, the field <IP

address> must be the same as the PLCA IP address configured in the project;

 NX3030_<IP address>_PLCB: identification related to the PLCB. In this case, the field <IP

address> must be the same as the PLCB IP address configured in the project.

Next, the PLC which MasterTool is to connect must be selected from the list and the button “Set

Active Path” must be pressed. Then, at executing the command from the Online / Login menu,
MasterTool connects to this PLC.

ATTENTION:

MasterTool can only connect to one PLC at a time. To connect to several PLCs, multiple instances

must be open in MasterTool, when care must be taken to open the correct project in each instance.

Modification Download in a Redundant Project

After both PLCs (PLCA and PLCB) from the redundant pair had its initial program already

downloaded, as described in the Initial Downloading of a Redundant Project section, it’s possible to

download successive changes in the project, when such changes are necessary.

MasterTool connection to the PLCs responsible for the modifications download must be executed as

described in MasterTool Connection with a NX3030 CPU from a Redundant PLC section. In this

section it is explained how it’s possible to connect to a specific PLC (PLCA or PLCB), to the Active
PLC or to the Non-Active PLC.

Usually the modifications must be downloaded to the Active PLC and next automatically

synchronized with the Non-Active PLC, through synchronism channels NETA/NETB. Therefore,

MasterTool normally must use the Active PLC exclusive IP address (PLCX IP address) to connect to
NET 1 channel from the NX3030 CPU in the Active PLC. In order to verify which PLC is in Active

state, the same step described in Initial Downloading of a Redundant Project - Forth Step –

Identifying the NX3030 CPU and Verifying the CPU Display can be followed.

ATTENTION:

To download a project in the Non-Active PLC is usually useless as the project automatic

synchronization (Active to Non-Active PLC) would cancel the effect of this download. However,

there are special situations when the project synchronization must be disabled temporarily, being
possible and useful to download a different project in the Non-Active PLC. These special situations

are discussed in the Exploring the Redundancy for Off-Line downloading of Modifications without

Interruption of the Process control section.

6. Redundancy with NX3030 CPU

 271

Off-Line and On-Line Modifications Download

Project modifications may be downloaded off or on-line.

Off-line downloads require the PLC, where the downloaded is supposed to be executed, stopping. On
the other hand, on-line downloads allow the PLC to continue executing its application while the

modification is downloaded.

Some modification types require off-line download and can’t be executed on-line in the PLC where
MasterTool is connected. In this case, there are two options:

 To interrupt the process control, executing the procedure described in the Off-Line Download of

Modifications with Process Control Interruption section

 Use the PLC and the PROFIBUS networks redundancy in order to avoid interruption of the

process control, even with the necessity to execute off-line downloads in each half-cluster (PLCA

or PLCB). A procedure to reach this objective is described in the Exploring the Redundancy for
Off-Line downloading of Modifications without Interruption of the Process control section

Modifications which Demand Off-Line Download and the Interruption of the Process Control

The following modifications in a project will make it impossible to be downloaded in a redundant
system with no interruption of the process control:

 Modifications in the redundant memory areas (changes in the Redundancy Parameters from the

module NX4010)

ATTENTION:

Will not be possible to change the size of redundant memory areas without the interrupt of the
process control. Thus, these areas must be carefully planned and previously configured.

Modifications which Demand Off-Line Download

The following modifications demand off-line downloads in the PLC where MasterTool is connected:

 To add or remove devices from the device tree, such as:

o Modules in the main rack (NX5001 PROFIBUS masters, NX5000 Ethernet interfaces, etc.)
o Remotes in PROFIBUS networks

o I/O modules in remotes in PROFIBUS networks

o MODBUS instances

 To modify parameters inside devices from the device tree, such as:

o IP addresses and other Ethernet interfaces parameters

o PROFIBUS master parameters

o PROFIBUS remotes parameters
o I/O modules parameters inside PROFIBUS remotes

 To modify a task’s period

 Project update due to MasterTool IEC XE programmer Update.

Modifications which Allow On-Line Download

A priori, the modifications not mentioned in the sections Modifications which Demand Off-Line

Download and the Interruption of the Process Control and Modifications which Demand Off-Line
Download allows on-line download.

Even this way, the modifications which allow on-line download in the PLC where MasterTool is

connected are listed below. These modifications are valid for variables, POUs and GVLs, redundant
or not:

 To add POUs from the program type, if these POUs don’t need to be associated to any task

 To remove POUs from the program type, if these POUs aren’t associated to any task

6. Redundancy with NX3030 CPU

 272

 To add or remove POUs from the function or function-block type

 To modify the code of any type of POU (program, function or function block)

 To add or remove symbolic variables in any POU type (program, function or function block)

 To add or remove instances of function blocks in POUs from the program or function-block type

 To add or remove GVLs

 To add or remove symbolic variables or instances of function blocks in GVLs

On-Line Download of Modifications

In the Off-Line and On-Line Modifications Download section, modifications which demand off-line

download were described, along with the ones that allow online download.

An online change must be made by connecting the MasterTool to the NET 1 channel of the active

CPU, using its unique IP address. Before version 2.01 of the MasterTool IEC XE, it was necessary

that the user selected the "Create Boot Application" option in the Communication menu, after
sending the application for the changes to be sent to the non-volatile memory area of the CPU and

could be synchronized. From version 2.01 this operation is no longer needed. After sending the

application the send operation for nonvolatile memory is performed automatically.

ATTENTION:
It’s important to remember that online modifications, without the option mentioned previously

selected, will be lost in case of a hot reset or a CPU switch off.

ATTENTION:
An online change in the declaration of retain variables of the application (adding or removing

variables) followed by a drop in the power CP before "Create Boot Application" will corrupt

retentive memory, because the value of the retain variables that were saved does not match the

retrieved application variables in the restored memory.

When the Non-Active PLC realizes that have a different project from the Active PLC, it executes the

following actions:

 Negotiates automatic project synchronization with the Active PLC

 In case it’s in the Stand-by or Starting state, it switches to the Not-Configured state and remains

in it until the projects are synchronized again. After that, returns automatically to the Stand-by
state

 In case it’s in the Not-Configured or Inactive state, the STAND-BY button from the PX2612

panel must be pressed or an equivalent command must be executed. This way, after the project

synchronization, it goes out from the Not-Configured state and can go to Stand-by state, or go

back to the Inactive state if there’s a failure

Off-Line Download of Modifications with Process Control Interruption

In the present section, it’s defined a procedure to execute an off-line download which interrupts the

process control. Such situation is acceptable in specific process types and during programmed
process stopping.

An off-line download from this type must be executed connecting MasterTool to the NET 1 channel

of the Active PLC using the exclusive IP address from the Active PLC (CLPX Active IP). Before

beginning an off-line in the Active PLC the user receives two MasterTool warnings:

6. Redundancy with NX3030 CPU

 273

Figure 6-25. Off-Line Download Warning

By pressing Yes, the project is downloaded. When an off-line download is performed, the process’

control is interrupted, because the project is sent to the Active PLC, which will leave the Run state,
and therefore will be in the Not-Configured state.

Another important point is that if the other PLC is in Stand-by state, it must be switched to Inactive

state, e.g. pressing the PX2612 INACTIVE button on this PLC. This way, the turn off of this PLC by

the other PLC and its take over as Active is avoided.

ATTENTION:

When the Active PLC goes out from the Run mode and goes to Not-Configured, if the other PLC

was forgotten in Stand-by state, it takes over as Active and switches off the PLC which has just gone
from Active to Not-Configured. In this case, thus, the off-line download can’t be completed because

the PLC connected to MasterTool is off.

When the off-line download finishes, it’s possible to restart the PLC program execution where the

application was downloaded (put in Run again). After a few seconds, this PLC takes over again the
Active state.

After this PLC takes the Active state again, the other PLC can go out from the Inactive state, e.g.

pressing the PX2612 STAND-BY button on it. This causes the transition of this PLC to the Not-
Configured state. This PLC remains in the Not-Configured state until the automatic project

synchronization finishes. Then, it goes to Starting state and back to Stand-by state afterwards.

Previous Planning for Off-Line Modifications without Process Control Interruption

The following section Previous Planning for Hot Modifications in Redundant PROFIBUS Networks
describes a very important procedure which allows the off-line modifications download without

interrupting the process control. Even though this procedure doesn’t apply to any modification that

demand off-line download, it applies to the most used modifications.

However, in order to apply this procedure, the projects must be developed with a previous planning,

especially for modification that affects the PROFIBUS network. The following subsections describe

such previous planning for modifications that affect the PROFIBUS network and also other

modifications.

Previous Planning for Hot Modifications in Redundant PROFIBUS Networks

Among the modifications that affect a PROFIBUS network and demand an off-line download, the

following are supported by the procedure which allows executing off-line downloads without
interrupt the process control, if the PROFIBUS network is redundant:

 Insert a new PROFIBUS network

 Insert a new Ponto Series remote

 Insert a new I/O module in a Ponto Series remote

 Modify parameters in Ponto Series remotes or in I/O modules in Ponto Series remotes

6. Redundancy with NX3030 CPU

 274

ATTENTION:

It’s possible to insert non-redundant remotes under a redundant PROFIBUS network, using the AL-

2433 module (ProfiSwitch), as the example shown on Figure 6-1. However, such non-redundant
remotes will suffer discontinuities (output deactivation) when the off-line download is executed.

Next, the planning steps that must start at the creation of a new redundant PROFIBUS network are

described.

Step 1 – Plan Future Expansion of the Remotes Inserted in the PROFIBUS Network Initial Version

At first, a list must be made of the I/O modules which compose each redundant PROFIBUS remote

from the Ponto Series, in the PROFIBUS network initial version. The list must have the position

where each I/O module is inserted in the remote rack.

Next, the future expansion of each remote must be planned. For that, a complementary list must be
made, consisting in I/O modules which might be inserted in the future. In it, the position where each

I/O module might be inserted in the remote rack must be listed.

ATTENTION:
At the physical construction of these remotes (electric panels), it’s strongly recommended to insert

compatible bases with the future I/O modules in the respective positions. This way, when the I/O

module insertion is necessary in this remote, there’s no need for switching off the remote to insert

the base. In case this detail isn’t observed, it will be necessary to switch off the specific remote, as
it’s not possible a base hot insertion in the remote. It can be observed that the remote stopping in

some cases can be tolerable, but not always.

ATTENTION:
The original I/O module bases must be inserted in the first remote rack positions and the future I/O

modules, in the last remote rack positions.

ATTENTION:
It must be considered the limitations of the Ponto Series redundant remotes at constructing this list,

as the PO5063V1 PROFIBUS Head Utilization Manual and PO5063V5 PROFIBUS Redundant

Head, and PO5064 PROFIBUS Head Utilization Manual and PO5065 PROFIBUS Redundant Head.

There are limits regarding the number of modules per remote, number of bytes per remote, current
consuming per power supply, etc. These limits are verified automatically by the ProPonto. For

further information, see the MT6000 MasterTool ProPonto Utilization Manual - MU299040.

Step 2 – Insert the Redundant PROFIBUS Network Initial Version in the Project

To insert the redundant PROFIBUS network initial version in the project, initially the two redundant

NX5001 modules must be inserted in the rack, or use those already inserted by the redundancy

wizard.

Next, each remote must be inserted in the device tree below these two NX5001, as well as the I/O
modules under each remote.

Regarding the inserted I/O modules, there are two categories that must be treated differently:

 Those that are part of the PROFIBUS network initial version and will be installed immediately

 Those that will be used for future expansion

In the case of those that are part of the PROFIBUS network initial version, the module itself must be
inserted in the device tree, in the planned remote correspondent position.

6. Redundancy with NX3030 CPU

 275

In the case of those that will be used for future expansion, a virtual module must be inserted in the

planned correspondent position. A virtual module correspondent to a real module needs to allocate

the same amount of I/O bytes than this real module. The virtual module insertion in the place of a
real module avoids the real module absence diagnostics to be produced.

The following Table 6-4 shows real modules and its correspondent virtual modules:

Real Module Correspondent Virtual Module

PO1000 PO9999 – 2 bytes input

PO1001 PO9999 – 2 bytes input

PO1002 PO9999 – 2 bytes input

PO1003 PO9999 – 2 bytes input

PO2020 PO9999 – 2 bytes output

PO2022 PO9999 – 2 bytes output

Table 6-4. Virtual Modules correspondent to the real modules

Step 3 – Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future Remote
Expansion

As the NX5001, remotes and I/O modules were being inserted in the device tree in the previous step,
%I and %Q variables were being allocated in three different areas:

 %I variables area for inputs

 %Q variables area for outputs

 %Q variables area for diagnostics

MasterTool executes the allocation of each one of these three variable areas in a continuous way,

with no holes between them.

The initial and final address of each one of these three areas must be planned, considering the

initially installed remotes in the network (see steps 1 and two), but also remotes which might be

inserted in the future in this same PROFIBUS network.

At defining the initial address of each area, it’s important to reserve expansion for the device which
allocates addresses immediately before the beginning of this area. On the other hand, at defining the

final address of each area, it’s important to reserve expansion for this PROFIBUS network.

Next, an example of such planning is shown, for %I variables area for inputs:

 PROFIBUS 1 network:

o %IB0 ... %IB499 (addresses allocated to already installed remotes)

o %IB500 ... %IB999 (addresses allocated future remotes)

 PROFIBUS 2 network:

o %IB1000 ... %IB1499 (addresses allocated to already installed remotes)
o %IB1500 ... %IB1999 (addresses allocated future remotes)

 Modbus TCP server:

o %IB2000 ... %IB2999 (addresses allocated to current mapping)

o %IB3000 ... %IB3999 (addresses allocated to future mapping)

For the two other areas (output %Q and diagnostic %Q) similar examples could be executed.

It’s possible to predict the initially allocated and future expansion areas size using the following

Table 6-5 which indicates the byte quantity allocated for the 3 phases for each module:

Module Inputs %I (bytes) Output %Q (bytes) Diagnostic %Q (bytes)

NX5001 4 2 86

PO5063V5 0 0 25

6. Redundancy with NX3030 CPU

 276

PO5065 0 0 25

PO9100 (one each remote) 2 2 10

PO1000 2 0 10

PO2020 0 2 10

PO9999 – 2 bytes output 0 2 10

PO9999 – 2 bytes input 2 0 10

Table 6-5. %I and %Q variables allocation for PROFIBUS network modules

Note:

Variable Allocation: Further information regarding the size and type of memory allocated for each

module can be found in the PROFIBUS-DP NX5001 Master Utilization Manual.

After executing the planning for the 3 areas (initial and final address of each area), the initial

addresses must be inserted in the projected started in step 2.

At first, the parameter “ %Q Initial Address of Module Diagnostics Area” must be modified in the

first NX5001 module, as shown on the table on the next figure. The planned initial address must be

used for the diagnostic %Q variables area.

Second, the first network I/O module must be found, starting with the NX5001, which allocate %I

variables for inputs. At finding it, the correspondent “Address” parameter must be altered.

Third, the first network I/O module must be found, starting with the NX5001, which allocate %Q

variables for outputs. At finding it, the correspondent “Address” parameter must be altered.

ATTENTION:

At this moment it’s recommended to verify the allocated address range for the 3 variable areas,

verifying if the final addresses of each area are within the planned range, and if there’s a good free
area for expansion for new future remotes insertion.

Previous Planning for Other Hot Modifications

There are other hot modifications which, though they don’t affect the PROFIBUS network, also

demand off-line downloading. Next, it’s presented some examples of this type of modifications
supported by the procedure which allow executing modifications off-line download without

interrupting the process control:

 NX5000 modules insertion (Ethernet)

 Ethernet or Serial communication I/O driver insertion

 Ethernet or Serial communication I/O driver new mapping insertion

 MainTask period modification

Some simple modifications, such as the MainTask period, don’t demand any previous planning.

On the other hand, the previous examples of modifications imply the direct representation %I and

%Q variables allocation for diagnostics, inputs and outputs similar to discussed in step 3 from the

previous planning for hot modifications which affect the PROFIBUS network (see Step 3 – Allocate

%I and %Q Variables Areas for the PROFIBUS Network considering Future Remote Expansion).

This way, at inserting the NX5000 module, or an I/O Ethernet or Serial driver, the allocation of the 3

following areas must be planned for the inserted device:

 %I variables area for inputs

 %Q variables area for outputs

 %Q variables area for diagnostics

The Step 3 – Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future
Remote Expansion section shows an example of group allocation of these areas, including

PROFIBUS networks and an I/O driver (Modbus TCP server).

6. Redundancy with NX3030 CPU

 277

Incompatibility of Applications

If the areas to be used in the future not be planned properly, the redundant memory areas may have to

be altered, thus generating a incompatibility between the applications. This will result in only on PLC
to remain in the Active state, with the other PLC remaining Inactive, without the possibility of

synchronizing redundant data or application between the two PLCs.

This incompatibility is informed by the redundancy diagnostics at:
DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bApplicationIncompatible.

This diagnostic is active when the download of a new application is done to one of the PLCs, usually

the Non-Active, with one of the following changes:

 Changes in the redundant memory areas, configured in the parameters of the NX4010 module

 Changes (create or remove) in the symbolic redundant variables, declared in redundant POUs or

redundant GVLs

It is important to stress that, to make changes in symbolic redundant variables, the incompatibility

problem will occur only if a new application download is done to one of the PLCs. In case that the

modifications in symbolic redundant variables, and all the other modifications made in the project, fit
into the group of Modifications which Allow On-Line Download, is possible to do an On-Line

Download of Modifications with no generation of incompatibility of applications between the PLCs.

Project Update due to MasterTool IEC XE Update

The MasterTool IEC XE programming tool is under a constant enhancement process, improving its

features and adding new ones. When it is necessary to update the tool in a redundant system, the used

project also needs to be updated. This update is done through the Project/Project Update menu,

available in the tool. After updating the project, the Off-Line download without Process Control
Interruption can be done.

Updating Project from Versions Previous to 2.00 to version 2.00 or Higher

Among the MasterTool IEC XE version changes there is a special case that must be planned more
carefully to avoid stopping the process. The update of a project created with a version prior to 2.00 of

the MasterTool IEC XE to version 2.00 or higher causes a reconfiguration in the area allocated for

the Persistent Variables object. This reconfiguration was implemented aiming at optimizing the

allocation of this area. However, if this object is present and marked as redundant in a project, this
reconfiguration won’t allow the data to be synchronized between the two project, always setting one

of the Half-Cluster in Inoperative State.

This way, if this situation happens, the NX3030 CPU software can detect it and stop the
synchronization of the Persistent Variables object data until the two Half-Clusters’ projects are the

same, and, therefore, are using a project with the updated MasterTool IEC XE version. This situation

won’t stop the process, but if a correct update sequence is not followed, the data of the Persistent
Variables object can be restarted.

In this case, the Off-Line Download sequence below must be followed:

 Change the Half-Cluster in Active state project, unmarking the PersistentVars object inside the

Redundancy Configuration object. This download must be done as an On-Line change and for

this to happen another change in the project must be done, e.g. declaring a new variable inside
the NonSkippedPrg POU

 After the On-Line change, it’s necessary to run the command Create Boot Application while on-

line, with the PLC in Active state. This is necessary so that the application is synchronized with

the Half-Cluster that passed to Non-Configured state after the download.

 Update the project from version lower than 2.00 to version 2.00 or higher through the

Project\Project Update menu in MasterTool IEC XE

 Disable the Project Synchronization through the Communication\Redundancy Configuration

menu

6. Redundancy with NX3030 CPU

 278

 Download the updated Project into the Half-Cluster that’s in Stand-by state. A message will be

displayed indicating the PersistentVars object memory area reorganization. The procedure must

continue and by the end of the project download the Half-Cluster will remain in STOP with a

redundancy state as Not-Configured

 Put the CPU in RUN. The Half-Cluster will change to Starting state and then to Stand-by. The

Half-Cluster will synchronize its data with the one that’s in Active state.

 The data from the PersistentVars object must be copied from the Active Half-Cluster to the

Stand-by manually or the receipt resource must be used

 Put the Active Half-Cluster to Stand-by. With this action, the other Half-Cluster will go to

Active.

 Enable the Project Synchronization through the Communication\Redundancy Configuration

menu. After this, the Half-Cluster in Stand-by sate will go into Not-Configured state and will

receive the project from the Half-Cluster in Active state. By the end of this process, the Half-

Cluster state will go to Starting and then back to Stand-by.

 Change the Project of the Half-Cluster in Active state marking the PersistentVars object inside

the Redundancy Configuration object. This download must be done as an On-Line change, and
for this to happen, another change in the project must be done, e.g. removing the variable

declared at the beginning of this process.

 After this, the Half-Cluster that was in Stand-by will pass to Non-Configured and will receive the

Project from the Half-Cluster in Active state. By the end of this process the Half-Cluster state
will change to Starting and then back to Stand-by.

Exploring the Redundancy for Off-Line downloading of Modifications without Interruption of
the Process control

In the Off-Line and On-Line Modifications Download section, it was informed that some

modifications demand an off-line download in the PLC.

In these cases the user has the option to interrupt the process control, according to the procedure

defined in the Off-Line Download of Modifications with Process Control Interruption section. For
that, usually it’s necessary to previously program a process stopping, what isn’t always possible at

the moment the modification is needed.

Fortunately, the PLCs redundancy, and in some cases, the PROFIBUS network redundancy make
possible to execute the off-line download without interrupting the process control, for most of the

modifications needed. For reaching this objective it’s necessary to follow carefully a procedure,

which the steps are described in the following sub-sections.

Step 1 – Verify Basic Requirements Attending

For the off-line downloading with no interruption of the process control to be possible, the following

basic requirements must be attended:

 The original project must have been created according to the recommendations of the Previous

Planning for Off-Line Modifications without Process Control Interruption section

 The PLC must be redundant

 In case the modification affects the PROFIBUS network, it’s necessary this network to be

redundant. Such modifications may be:

o New remotes insertion

o I/O modules insertion in existent remotes, in previously reserved positions for correspondent
virtual modules. For the remote not have to be switched off, there’s the need of a base

compatible with the new I/O module in the position reserved for it

o Parameters modifications in remotes or existent I/O modules

 Both PLCs projects must be equalized and the Redundant Data Synchronization and Redundant

Forcing List services must be working properly with no failure diagnostics. It can be stated these
conditions are satisfied when there’s a PLC in Active state and another in Stand-by state. In case

the Non-Active PLC isn’t in Stand-by state, the following diagnostics can be observed:

6. Redundancy with NX3030 CPU

 279

o DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bRedDataSync = TRUE, indicates the

success of the Redundant Data Synchronization service

o DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bRedForceSync = TRUE, indicates
the success of the Redundant Forcing List service

o DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.dwApplicationCRC =

DG_NX4010.tRedundancy.RedDgnRem.dwApplicationCRC, indicates both PLCs projects
are equal

Step 2 – Don’t Download in Group Modifications which can be downloaded On-Line

Modifications which can be downloaded on-line must not be downloaded together with modifications

which must be downloaded off-line without the process control interruption. When these two kinds
of modifications are needed, they must always be loaded separately.

For the current procedure to be successful, it’s absolutely necessary the modifications executed to

don’t cause any changes in the structure of the redundant variables exchanged between the Active
and Non-Active PLC, through the Redundant Data Synchronization and Redundant Forcing List

services. These two services must continue to working properly even while there are temporary

differences between the PLCs.

The modifications that must be loaded off-line, and supported by this procedure do not affect the
structure of redundant variables.

However, some modifications which can be loaded on-line can change the structure of redundant

variables, e.g.:

 Insertion of symbolic variables (redundant or not) within a POU or GVL existing or in a new

POU or GVL

 Removal of symbolic variables (redundant or not) within a POU or within existing GVL. The

removal of a POU or GVL can also involve the removal of symbolic variables

 Change in size/structure of symbolic variables (redundant or not) in an existing POU or GVL

Step 3 – Previous Project Backup

Before editing the modifications that must be loaded off-line without interrupting the process control,

for safety reasons a backup of the project previous version must be run. It may be necessary to

reinstall the previous version in case an error is committed during this procedure executing.

ATTENTION:
The backup recommendation for all loaded versions in the PLCs may not be followed only in this

specific procedure. It must be a usual practice.

Step 4 – Cares in Editing the Off-line Downloaded Modifications

The off-line downloaded modifications through this procedure, usually, are the following:

 Insertion of new devices in the devices tree

 Property or parameter change in devices existing in the devices tree

Such devices are normally the following:

 Modules such as PROFIBUS master (NX5001) or Ethernet modules (NX5000)

 Ponto Series PROFIBUS remotes

 I/O modules inside Ponto Series PROFIBUS remotes

 Modbus communication I/O drivers

 Mapping of Modbus communication drivers

The following cares must be taken at editing these project modifications:

6. Redundancy with NX3030 CPU

 280

 If a device existed in the previous project version, and continues existing in the modified version,

the %I and %Q variables allocated for it must remain the same (command, diagnostic, inputs and

outputs). Care must be taken for the inserted modifications don’t change such allocations

 If a device was inserted in the modified project version, the %I and %Q variables allocated for it

must not be allocated in the previous project version (command, diagnostic, inputs and outputs)

Step 5 – Inactive PLC Project Synchronism Disabling

In the procedures described in the On-Line Download of Modifications and Off-Line Download of

Modifications with Process Control Interruption sections, the project is automatically synchronized
from the Active PLC to the Non-Active PLC.

However, during the procedure of off-line downloading without process control interruption, the

project synchronism must be temporarily disabled.

The Project synchronization disabling is explained in the section Project Synchronization Disabling
and must be executed in the Non-Active PLC.

Step 6 – Physical Modifications Executing

At this moment, the physical modifications can be executed, such as:

 Install a new NX5000 module. This can be done through a module hot-insertion in each half-

cluster rack, then connecting it to the Ethernet network

 Install a new redundant PROFIBUS network. The NX5001 can be hot-inserted in each half-

cluster rack. Then, the redundant PROFIBUS network can be connected to them

 Install a new Ponto Series redundant remote. In this case, a remote head must be installed at a

time, e.g. first in the network B and then in the network A:

o To install the head in the network B, it may be necessary to open the cable or the contacts,

thus perturbing the communication with the other heads already installed in the network B.

Before doing that, all the operating active heads must be placed in the network A and the

operating reserve heads in the network B
o To install the head in the network A, it may be necessary to open the cable or the contacts,

thus perturbing the communication with the other heads already installed in the network A.

Before doing that, all the operating active heads must be placed in the network B and the
operating reserve heads in the network A

 Install an I/O module in a base previously reserved for it, in an existent remote

Step 7 – Download the Off-Line Modifications in the Non-Active PLC

At first, MasterTool must be connected to the Non-Active PLC (see MasterTool Connection with a

NX3030 CPU from a Redundant PLC section).

Next, the off-line modifications must be downloaded. At doing it, the Non-Active PLC application is

automatically interrupted (goes out of the Run mode).

Step 8 – Set the Non-Active PLC Back to Run Mode to make go back to Stand-by State

The off-line load being finished, the Non-Active PLC can go back to Run mode.

A few seconds later, the Non-Active PLC must assume the Stand-by state.

In case the PLC doesn’t assume the Stand-by state, the following problems may have caused this
effect:

 The modifications executed changed the redundant variables structure, which prevents the correct

execution of the Redundant Data Synchronization service. This can be verified through

DG_NX4010.tRedundancy.RedDgnLoc. sGeneral_Diag.bRedDataSync (0 = failure) diagnostics

in the Non-Active PLC. In this case, the modifications must be undone, recovering the previous
project backup and restarting this procedure

6. Redundancy with NX3030 CPU

 281

 Other problems may eventually prevent the transition to the Stand-by state, even though this is

unexpected. In this case, the diagnostics and the redundancy log must be observed

In case the PLC has assumed the Stand-by state, it’s recommendable to verify if the projects are

different between the Active and the Non-Active PLC. This can be made comparing the diagnostics
DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.dwApplicationCRC and

DG_NX4010.tRedundancy.RedDgnRem.dwApplicationCRC in the Non-Active PLC (the CRCs

must be different).

In case both projects are equal in the PLCs, it’s possible that the project synchronism disabling (step

5) has not being properly executed. This can be verified through the diagnostic

DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bProjectSyncDisable which must be true in

the Non-Active PLC. If it isn’t true, the procedure must be returned to step 5.

Step 9 – Execute Switchover between Active and Stand-by PLCs

A switchover between the PLCs must be executed, e.g. pressing the STAND-BY button on the

Active PLC. The Stand-by PLC, which has a new project with the modifications, takes over as
Active. The Active PLC, which has the old project, takes over as Stand-by.

Step 10 – Projects Synchronism Enabling in the Active PLC

In the step 5, the project synchronism was disabled in the Non-Active PLC. It can be observed this

PLC is now in Active state.

In this step, the project synchronism must be enabled again in this PLC. The screen and methodology

used for it were described in the section Project Synchronization Disabling. But this time we need to

select the “Enable” option from the combo-box. MasterTool must be connected to the Active PLC
(see MasterTool Connection with a NX3030 CPU from a Redundant PLC section).

After enabling the project synchronism in the Active PLC, the user must verify if this command was

successful, verifying if DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.
bProjectSyncDisable= 0 in the Active PLC.

As soon as the project synchronism is enabled again, the following action sequence is expected:

 The Non-Active PLC (Stand-by state), which already knows the different between both projects;

goes out from the Stand-by state and goes to the Not-Configured state

 The modified project (new) is copied from the Active PLC to the other, temporarily in Not-

Configured state

 As soon as the projects are synchronized again, the Not-Configured PLC goes to Starting state

and then it’s supposed to go back to Stand-by state

Step 11 – Optional Reorganization of PLC and PROFIBUS Networks in Active State

At the end of the procedure, for standardization or organization reasons, the user may execute a
switchover for the PLCA assumes as Active, and for all remotes PROFIBUS heads in Active state

are in the network A.

6. Redundancy with NX3030 CPU

 282

Maintenance

Modules Hot Swapping in a Redundant PLC

In case of failure in a module from one of the PLCs (PLCA and PLCB), the module hot swapping

may be necessary, without interrupt the process control. For that, the following steps must be
followed:

 Verify if the half-cluster which won’t be modified is in Active or Stand-by state, allowing it to

take the process control

 To put the half-cluster having its module changed in Inactive state, through the Redundancy

Control Panel PX2612 or the Redundancy Commands

 Execute the necessary exchanges in the Inactive half-cluster, as indicated in the CPU

Configuration – General Parameters –How to do the Hot Swap chapter

 To put the half-cluster back to Stand-by or Active state, according to necessity

MasterTool Warning Messages

When MasterTool is with a redundant project open, or when it’s connected to a NX3030 CPU

identified as PLCA or PLCB, some special warning messages may occur, as described in the
following sub-sections.

Blocking of Redundant or Non-Redundant Project Download

MasterTool doesn’t allow the download of a redundant project, unless the CPU is NX3030 and is
identified as PLCA or PLCB (see NX3030 CPU Identification section).

On the other hand, MasterTool doesn’t allow the download of a non-redundant project in a NX3030

CPU identified as PLCA or PLCB.

In case any of these illegal actions is tried, MasterTool warns with a correspondent message.

Warnings before Commands which may stop the Active PLC

Some commands, as the following, may stop a PLC:

 Offline load after Online / Login

 Debug / Stop

 Debug / New Breakpoint

 Online / Reset (warm, cold, origin)

In case MasterTool is logged to the Active PLC, and one of these commands is tried, before sending
it to the Active PLC, MasterTool sends the following message and waits for authorization:

“If the other PLC is in Stand-by State, it will assume as Active and turn-off this PLC. If not, this

won’t happen, but the automated process will no longer be controlled.”

Warning before Logging to the Non-Active PLC

In normal circumstances, it isn’t usual MasterTool to connect to the Non-Active PLC. This way,

when there’s a try to execute this type of command, MasterTool sends the following warning:

“You are logging in to a Non-Active PLC, and this is not usual. Are you sure you want to execute this
command?”

On the other hand, there are circumstances (not so usual) in which it’s necessary to login in the Non-

Active PLC, and in these cases the user must authorize the login. Such circumstances may occur,
e.g.:

 For initial configurations, as described in Initial Downloading of a Redundant Project section

6. Redundancy with NX3030 CPU

 283

 For downloading off-line a different project in the Non-Active PLC, as described in the

Exploring the Redundancy for Off-Line downloading of Modifications without Interruption of

the Process control section

 For monitoring or forcing the non-redundant variables in the Non-Active PLC

Redundancy Diagnostics on the NX3030 CPU Graphic Display

Many diagnostics related to redundancy can be observed on the NX3030 CPU display.

CPU Redundancy State

The PLC redundancy state, described in Redundant CPU States is seen in the three initial characters
on the main screen second line, as shown in the chapter Graphic Display. The display screen is

presented on initialization and again a few seconds after the navigation is finished (without pressing

the NX3030 CPU button).

Screens below the REDUNDANCY Menu

There’s a menu called REDUNDANCY, where below it there are several screens. The description

and access of theses screens are available in the Configuration – CPU’s Informative and

Configuration Menu chapter.

Redundancy Diagnostics Structure

The NX4010 module diagnostics area is mapped over direct representation %Q variables, and

defined symbolic through the AT directive, in the GVL Diagnostics.

This section is divided in two parts:

 DG_NX4010.tGeneral: General diagnostics for NX4010 operation. They are described in the

Redundancy Link Module Technical Features – CE114900

 DG_NX4010.tRedundancy: Redundancy specific diagnostics which are described within the

chapter. This item is divided in other 6 data structures:

o RedDgnLoc: Has redundancy diagnostics of the local PLC (connected), e.g. the PLC
redundancy state. This section is described in Redundancy Diagnostics

o RedDgnRem: It’s a copy from the other PLC RedDgnLoc, received through Synchronism

channels NETA / NETB. This way the local PLC has access to the remote PLC diagnostics.
This section is described in Redundancy Diagnostics

o RedCmdLoc: Has redundancy commands generated in this PLC (local), for instance, through

write commands from a SCADA system or generated in POUs in this PLC (ActivePrg or

NonSkippedPrg). This section is described in Redundancy Commands
o RedCmdRem: It’s a copy from the other PLC (remote) RedCmdLoc, received through

Synchronism channels NETA / NETB. This section is described in Redundancy Commands

o RedUsrLoc: Used to allow the user to exchange information between PLCA and PLCB. This
section is described in User Information Exchanged between PLCA and PLCB

o RedUsrRem: Used to allow the user to exchange information between PLCA and PLCB. This

section is described in User Information Exchanged between PLCA and PLCB

It is important to stress that the redundancy diagnostics structures are refreshed only when occurs,

with success, a new data synchronization. Therefore, until a new synchronization doesn’t occur, the

diagnostics will remain with the last read value.

Furthermore, the diagnostics structures from the remote PLC are read only, that is, values written to
these structures will be overwritten in the next synchronization. Thus, is not possible to use the

RedCmdRem structure to execute a command in the remote PLC. Always use the structure

RedCmdLoc to execute commands.

6. Redundancy with NX3030 CPU

 284

Redundancy Diagnostics

The Redundancy Diagnostics may have several uses, such as:

 They can be consulted in order to verify the existence of a problem that needs to be solved

 Every time there are variations on them, such variations are inserted as events in the

“Redundancy Event Log”. Consulting the history sequence of such events, a switchover cause
may be discovered, for instance

 They can be referenced in the user application (ActivePrg or NonSkippedPrg). E.g. the PLC state

can be tested and in case it’s not active, a MODBUS RTU serial master I/O driver can be

disabled, in NonSkippedPrg

ATTENTION:

The _NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bExchangeSync (defined next) must be

tested to verify if the data structure RedDgnRem was successfully read from the remote PLC in the

last MainTask cycle. In case this diagnostic value is 0 (false), this means the data structure
RedDgnRem wasn’t successfully read from the remote PLC, thus the RedDgnRem values may be

invalid or obsolete.

As RedDgnRem is a copy from the other PLC RedDgnLoc, it can be concluded the two structures

have the same format. These are divided in other four substructures:

 sGeneral_Diag: Redundancy general diagnostics

 sNETA_Diag: NETA synchronism channel diagnostics

 sNETB_Diag: NETB synchronism channel diagnostics

 sNET_Stat: Common statistics for the synchronism channels NETA and NETB, for failure and

success counting in the synchronization services

The “sGeneral_Diag” substructure has the following fields for redundancy general diagnostics:

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.R

edDgnLoc.sGeneral_Diag.*

Description

Variable Bit

%QB(n+4)

0 bConfigDone

TRUE – The configuration process, executed in

the Not-Configured state, has finished.

FALSE – The configuration process, executed in

the Not-Configured state, hasn’t finished yet or
wasn’t executed.

1 bConfigError

TRUE – the configuration process, executed in

the Not-Configured state, has finished with
errors. It’s a system error, normally not expected.
Get in contact with ALTUS support to report it.

Also inform the ConfigErrorCode diagnostic
value for the ALTUS support.

FALSE – The configuration process has finished
successfully or wasn’t executed.

2 bTooManyRedAreas

TRUE – The number of redundant areas

exceeded the maximum allowed. It’s a system
error, normally not expected. Get in contact with
ALTUS support to report it.

FALSE – The number of redundant areas is

within the expected.

3 bTemporaryBufferTooSmall

TRUE – Intermediate data structure with

insufficient size. It’s a system error, normally not
expected. Get in contact with ALTUS support to

report it.

FALSE – Intermediate data structure is within the

expected.

4 bExchangeSync

TRUE – The Diagnostic and Commands

Exchange synchronization service was executed
successfully in this MainTask cycle.

FALSE – The RedDgnRem structure has

obsolete or invalid values, as it wasn’t read from

6. Redundancy with NX3030 CPU

 285

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.R
edDgnLoc.sGeneral_Diag.*

Description

Variable Bit

the other PLC (remote) in this cycle.

5 bRedDataSync

TRUE – The Redundant Data Synchronization

service was executed successfully in this
MainTask cycle.

FALSE – The Redundant Data Synchronization

service wasn’t executed successfully in this
MainTask cycle.

6 bRedForceSync

TRUE – the Redundant Forcing List
Synchronization service was executed

successfully in this MainTask cycle.

FALSE – the Redundant Forcing List

Synchronization service wasn’t executed
successfully in this MainTask cycle.

7 bApplicationIncompatible

TRUE – The application isn’t compatible
between the PLCs. Was done a new application

download with one of the following changes:

 - Changes in redundant memory area;

 - Changes in symbolic redundant variables;

Whereas this diagnostic be TRUE, one of the
PLCs will stay in Inactive state until the same
application be present in the two PLCs. This

implies in reload the old application or download
the new application to both PLCs. More
information about how to proceed can be found

in section Redundant CPU Program
Downloading.

FALSE – The application is compatible between
the PLCs.

%QB(n+5)

0 Reserved Reserved bit

1 bProjectSyncDisable

TRUE – The project application and project

archive will not be synchronized between the
PLCs. It’s a copy from the non-volatile variable
used to enabling or disabling the project

synchronization, as described in the Project
Synchronization Disabling section. The project
synchronization is disabled in the local or remote

PLC. This way, it’s enough to execute the
disabling command in one PLC for the project
synchronization to be disabled. The enabling and

disabling project synchronization commands are
described in the Project Synchronization
Disabling section.

FALSE – The project application and project

archive will be synchronized between the PLCs.

2 bIncompatibleFirmware

TRUE – Firmware version is incompatible

between this CPU and the remote one

FALSE – Firmware version is compatible
between this CPU and the remote one

3 bApplicationProjectDiff

TRUE – The project application between this

CPU and the remote one is different.

FALSE – The project application between this

CPU and the remote one is equal.

4 bProjectArchiveDiff

TRUE – The project archive between this CPU

and the remote one is different

FALSE – The project archive between this CPU
and the remote one is equal

5 bOnlineChangeApply

TRUE – Some alteration was done online in the

application and it hasn’t been synchronized yet
with the stand-by PLC.

FALSE – There wasn’t alterations online in the
application or these have been synchronized

already with the stand-by PLC.

6 bFailedRED TRUE – Failure in the NX4010 module. The

6. Redundancy with NX3030 CPU

 286

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.R
edDgnLoc.sGeneral_Diag.*

Description

Variable Bit

NX3030 CPU can’t communicate with this
module through bus, or there’s a failure in the
NX4010 microprocessor.

FALSE – The NX4010 module is working

properly.

7 bFailedPBUS1A

TRUE – This PLC can’t communicate in the

master state (active or passive) in the
PROFIBUS 1 A network. The master mode

(communicating with slaves) is assumed by the
Active PLC. The passive mode (communicating
with the active master) is assumed by the Non-

Active PLC. This failure can also be indicated in
case the NX5001 module has a microprocessor
failure, or in case it can’t communicate with the

NX3030 CPU via bus.

FALSE – There aren’t failures in the PROFIBUS

1 A network.

%QB(n+6)

0 bFailedPBUS1B

TRUE – This PLC can’t communicate in the
master state (active or passive) in the

PROFIBUS 1 B network. The master mode
(communicating with slaves) is assumed by the
Active PLC. The passive mode (communicating

with the active master) is assumed by the Non-
Active PLC. This failure can also be indicated in
case the NX5001 module has a microprocessor
failure, or in case it can’t communicate with the

NX3030 CPU via.

FALSE – There aren’t failures in the PROFIBUS

1 B network.

1 bFailurePROFIBUS_1

TRUE – This PLC can’t communicate in the
master state (active or passive) in the

PROFIBUS 1 network. In case the PROFIBUS 1
network is redundant, FailurePROFIBUS_1
results from a AND logic between

FailedPBUS1A and FailedPBUS1B. In case the
PROFIBUS 1 network isn’t redundant,
FailurePROFIBUS_1 is a copy from

FailedPBUS1A.

FALSE – There aren’t failures in the PROFIBUS

network.

2 bFailedPBUS2A

TRUE – this PLC can’t communicate in the
master state (active or passive) in the

PROFIBUS 2 A network. The master mode
(communicating with slaves) is assumed by the
Active PLC. The passive mode (communicating

with the active master) is assumed by the Non-
Active PLC. This failure can also be indicated in
case the NX5001 module has a microprocessor

failure, or in case it can’t communicate with the
NX3030 CPU via bus.

FALSE – There aren’t failures in the PROFIBUS
2 A network.

3 bFailedPBUS2B

TRUE – This PLC can’t communicate in the
master state (active or passive) in the

PROFIBUS 2 B network. The master mode
(communicating with slaves) is assumed by the
Active PLC. The passive mode (communicating

with the active master) is assumed by the Non-
Active PLC. This failure can also be indicated in
case the NX5001 module has a microprocessor

failure, or in case it can’t communicate with the
NX3030 CPU via bus.

FALSE – There aren’t failures in the PROFIBUS
2 B network.

4 bFailurePROFIBUS_2
TRUE – this PLC can’t communicate in the

master state (active or passive) in the
PROFIBUS 2 network. In case the PROFIBUS 2

6. Redundancy with NX3030 CPU

 287

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.R
edDgnLoc.sGeneral_Diag.*

Description

Variable Bit

network is redundant, FailurePROFIBUS_2
results from a AND logic between
FailedPBUS2A and FailedPBUS2B. In case the

PROFIBUS 2 network isn’t redundant,
FailurePROFIBUS_2 is a copy from
FailedPBUS2A.

FALSE – There aren’t failures in the PROFIBUS

2 network.

5 bPROFIBUSVitalFailureAny

TRUE – This PLC can’t communicate in the

master state (active or passive) with at least one
of the PROFIBUS networks configured in vital

failure mode.

FALSE – There aren’t failures in the PROFIBUS

networks configured in vital failure.

6 bPROFIBUSVitalFailureAll

TRUE – This PLC can’t communicate in the
master state (active or passive) with all the

PROFIBUS networks configured in vital failure
mode.

FALSE – There aren’t failures in the PROFIBUS

networks configured in vital failure.

7 bTurnOffOtherPLC_Normal

TRUE – This PLC is closing the PX2612 relay to
keep the other PLC off in normal conditions and

not due to PX2612 panel test.

FALSE – The PX2612 relay is on

(bTurnOffOtherPLC_TestMode) or off.

%QB(n+7)

0 bTurnOffOtherPLC_TestMode

TRUE – this PLC is closing the PX2612 relay to
keep the other PLC off due to PX2612 panel test

mode.

FALSE – The PX2612 relay is on

(bTurnOffOtherPLC_Normal) or off.

1 bActiveLED

TRUE – The PX2612 LED ACTIVE is on.

FALSE – The PX2612 LED ACTIVE is blinking
(bBlinkActiveLED) or off.

2 bBlinkActiveLED

TRUE – The PX2612 LED ACTIVE is blinking.

FALSE – The PX2612 ACTIVE is on
(bActiveLEDl) or off.

3 bStandbyLED

TRUE – The PX2612 LED STAND-BY is on.

FALSE – The PX2612 LED ACTIVE is blinking

(bBlinkStandbyLED) or off.

4 bBlinkStandbyLED

TRUE – The PX2612 LED STAND-BY is

blinking.

FALSE – The PX2612 LED STAND-BY is on
(bStandbyLED) or off.

5 bInactiveLED

TRUE – The PX2612 LED INACTIVE is on.

FALSE – The PX2612 LED INACTIVE is off or
blinking (bBlinkInactiveLED).

6 bBlinkInactiveLED

TRUE – The PX2612 LED INACTIVE is blinking.

FALSE – The PX2612 LED INACTIVE is on

(bInactiveLED) or off.

7 bRedPanelTestMode
TRUE – The PX2612 panel is in test mode.

FALSE – The PX2612 panel is in normal mode.

%QB(n+8) - ePLC_ID

This diagnostics inform this PLC identification:

- 0 = non-redundant

- 2 = PLCA

- 3 = PLCB

It’s a copy from the non-volatile variable used to

identify the PLC, as described in the NX3030
CPU Identification section. In the Initial
Downloading of a Redundant Project section

MasterTool command used to write on this non-
volatile variable is described.

6. Redundancy with NX3030 CPU

 288

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.R
edDgnLoc.sGeneral_Diag.*

Description

Variable Bit

%QB(n+9) - eRedState

informs the redundancy state of this PLC:

- Not-Configured = 0

- Starting = 2

- Stand-by = 3

- Active = 4

- Inactive = 5

%QB(n+10) - ePreviousRedState
Previous RedState value before the data

transition.

%QW(n+11) - wRedStateDuration

Measures for how long (milliseconds) the current

redundancy state has been assumed. This time
stops incrementing when reaches 65535ms.

%QW(n+13) - wConfigErrorCode
Error code discovered during the configuration

process in the Not-Configured state. See
ConfigError diagnostics described previously.

%QD(n+15) - dwApplicationCRC
32 bits applicative project CRC, used to detect
differences between the applicative projects of

the 2 PLCs.

%QD(n+19) - dwArchiveCRC
32 bits project archive CRC, used to detect

differences between the project archive of the 2
PLCs.

%QD(n+23) - dwFirmwareVersion
This PLC firmware version, used to verify the
compatibility between both PLC firmware.

%QD(n+27) - dwIECTimer

The IEC Timer synchronization is necessary for

the bump-less operation of some function block
as TON and TOF. Through this diagnostic the
IEC Timer from the Active PLC is received and

updated in the Non-Active PLC, since the
Diagnostics and Commands Exchange service
has been executed successfully. The counting

starts at 0 and is incremented up to 4294967295.
After counting overflow restarts with 0.

%QW(n+31) - wCycleCounter

16 bits counter, used as sequence auxiliary
information in the Redundancy Event Log. In the

Active PLC, it’s incremented each MainTask
cycle. In the Non-Active PLC, receives a copy of
the value existent in the Active PLC, since the

Diagnostics and Commands Exchange service
has been executed successfully. The counting
starts at 0 and is incremented up to 65535. After

counting overflow restarts with 0.

Table 6-6. Redundancy General Diagnostics

Notes:

Diagnostics Structures Visualization: The diagnostics structures added to the project can be

visualized accessing the “Library Manager” from the tree view in the MasterTool IEC XE window.

With that it’s possible to visualize all data types defined in the structure.

Direct Representation Variables: The “n” represents the configured value in the NX4010 module,
through MasterTool IEC XE software, as a Diagnostics Initial Address in %Q. This definition is true

for all diagnostics structure.

AT Directive: The AT directive is a word reserved in the programming software which is connected
to a variable address. In case of a NX4010 module the DG_NX4010 variable is related to the module

diagnostics initial address.

DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bExchangeSync: When this diagnostic

variable is with value FALSE, is not possible to define the state of some other diagnostics, such as
bIncompatibleFirmware, bApplicationProjectDiff and bProjectArchiveDiff. There will not represent

the correct value because they depend on the correct functioning of the communication between the

two CPUs, so that information can be correctly generated.

6. Redundancy with NX3030 CPU

 289

The “sNETA_Diag” substructure has the following fields for NETA synchronism channels

diagnostics:

Direct Representation

Variable
AT Variable

DG_NX4010.tRedundancy.Re

dDgnLoc.sNETA_Diag.*

Description

Variable Bit

%QB(n+33)

0 bGeneralFailure

TRUE – The synchronism channel has some

type of failure. The 3 next diagnostics will
indicate the specific failure.

FALSE – The synchronism channel is working
properly.

1 bInternalFailure

TRUE – The detected failure has its cause

within this PLC. Such failures are treated in a
special way.

FALSE – The NX4010 module is working
properly.

2 bLinkDownFailure

TRUE – The AL-2319A cable is disconnected

from the NX4010 module or broken in one of the
PLCs.

FALSE – The AL-2319A cable is connected to
the NX4010 module.

3 bTimeoutFailure

TRUE – This failure is reported in case a

synchronization service hasn’t been finished
successfully within a specific time out and
failures from the type bInternalFailure or

bLinkDownFailure haven’t been found to justify
that.

FALSE – The NX4010 module is working

properly.

4 a 7 bReserved[4..7] Reserved.

Table 6-7. NETA Interface Specific Diagnostics

The “sNETB_Diag” substructure has the following fields for NETB synchronism channels

diagnostics:

Direct Representation

Variable
AT Variable

DG_NX4010.tRedundancy.

RedDgnLoc.sNETB_Diag.*

Description

Variable Bit

%QB(n+34)

0 bGeneralFailure

TRUE – The synchronism channel has some type

of failure. The 3 next diagnostics will indicate the
specific failure.

FALSE – The synchronism channel is working
properly.

1 bInternalFailure

TRUE – The detected failure has its cause within

this PLC. Such failures are treated in a special
way.

FALSE – The NX4010 module is working properly.

2 bLinkDownFailure

TRUE – The AL-2319A cable is disconnected from
the NX4010 module or broken in one of the PLCs.

FALSE – The AL-2319A cable is connected to the

NX4010 module.

3 bTimeoutFailure

TRUE – This failure is reported in case a

synchronization service hasn’t been finished
successfully within a specific time out and failures
from the type bInternalFailure or bLinkDownFailure

haven’t been found to justify that.

FALSE – The NX4010 module is working properly.

4 a 7 bReserved[4..7] Reserved.

Table 6-8. NETB Interface Specific Diagnostics

6. Redundancy with NX3030 CPU

 290

The “sNET_Stat” substructure has service success and failure statistics. The local and remote PLCs

statistics can be restarted through commands:

//Local PLC

DG_NX4010.tRedundancy.RedCmdLoc.bResetNETStatisticsLocal := TRUE;

//Remote PLC

DG_NX4010.tRedundancy.RedCmdLoc.bResetNETStatisticsRemote := TRUE;

The substructure has the following counters:

Direct

Representation
Variable

AT Variable

DG_NX4010.tRedundancy.
RedDgnLoc.sNET_Stat.*

Description

%QW(n+35) wSuccessExchDgCmdSync
Success counting of the Diagnostics and

Commands service (0 to 65535)

%QW(n+37) wFailedExchDgCmdSync
Failure counting of the Diagnostics and

Commands service (0 to 65535)

%QW(n+39) wSuccessRedDataSync
Success counting of the Redundant Data
Synchronization service (0 to 65535)

%QW(n+41) wFailedRedDataSync
Failure counting of the Redundant Data

Synchronization service (0 to 65535)

%QW(n+43) wSuccessRedForceSync
Success counting of the Redundant Forcing List

Synchronization service (0 to 65535)

%QW(n+45) wFailedRedForceSync
Failure counting of the Redundant Forcing List

Synchronization service (0 to 65535)

%QB(n+47) byReserved[1..8] Reserved

Table 6-9. Interface Specific Diagnostics

Note:

Counters: All counters return to zero when its limit value is exceeded.

Redundancy Commands

The structure command fields RedCmdLoc and RedCmdRem have a suffix which can be Local or

Remote. E.g. there are the command fields StandbyLocal that StandbyRemote that have equivalent

effect to the PX2612 panel STAND-BY button.

A command with Local suffix generated in RedCmdLoc must be executed in the local PLC (local).

On the other hand, a command with Remote suffix generated in RedCmdLoc will be executed in

another PLC (remote). This works as the following:

 The remote PLC, each MainTask cycle, receives the RecCmdLoc copy from the local PLC

through NETA / NETB, and this copy is called RedCmdRem in it

 The remote PLC only executes the RedCmdRem commands with the Remote suffix

Example 1: if the local PLC is in Active state, and it’s desired to switch it to the Stand-by state, the

DG_NX4010.tRedundancy.RedCmdLoc.bStandbyLocal bit can be turned on in it.

Example 2: if the remote PLC is in Active state, and it’s desired to switch it to the Stand-by state, the
DG_NX4010.tRedundancy.RedCmdLoc.bStandbyRemote bit can be turned on in the local PLC. This

may be useful, for instance, if the communication of a SCADA system is temporarily unavailable

with the remote PLC. In this case, the command is written by the SCADA in the local PLC that
retransmits to the remote PLC through NETA / NETB.

6. Redundancy with NX3030 CPU

 291

ATTENTION:

If the DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bExchangeSync diagnostic is

indicating a Diagnostics and Commands Exchange service failure, a command with Remote suffix
isn’t allowed to be transmitted to the remote PLC, thus, won’t be executed.

To trigger a command, the RedCmdLoc correspondent bit must be turned on. This can be done

through a SCADA system, executing writing via MasterTool or even turning the bit on inside a POU

as ActivePrg or NonSkippedPrg.

The user doesn’t need to worry with the command bit deactivating, which is automatically done by

the redundancy manager:

 In case of commands executed in the local PLC (RedCmdLoc + commands with Local suffix),

the bit is turned off as soon as the command is seen and executed

 In case of commands executed in the remote PLC (RedCmdRem + commands with Remote

suffix):

o In the remote PLC, the command is executed when the redundancy manager sees an up-going

edge in the command bit

o In the local PLC where the command was generated, the bit is turned off automatically in the
next MainTask cycle

ATTENTION:

There are two command bits which normally must be turned off by the user:

DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal and _NX4010.tRedundancy.
RedCmdLoc.bTestRelayLocal. Further details regarding these commands are described ahead in this

section. In case the user forgets to turn them off, there are automatic mechanisms which are

supposed to do it instead.

It’s important to stress that any command activating or deactivating are registered in the Redundancy
Event Log, which is important for the history analysis, e.g. to determine a switchover cause.

Next, the RedCmdLoc and RedCmdRem structure fields are defined:

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.Re

dCmdLoc.*

Description

Variable Bit

%QB(n+55)

0 bButtonTurnOnLocal

TRUE – It’s a processed copy from the

TURN ON PLCx button written on the
PX2612 panel. This bit is activated 1 second
after the button pressing and deactivated

immediately at its releasing. It’s important to
stress that this bit will be activated when the
TURN ON button on the remote PLC is

pressed, as this type of command is always
sent by the remote PLC.

FALSE – The button TURN ON PLCx isn’t
pressed.

1 bButtonStandbyLocal

TRUE – It’s a processed copy from the

STAND BY button written on the PX2612
panel. This bit is activated 1 second after the
button pressing and deactivated immediately

at its releasing.

FALSE – The button STAND BY isn’t

pressed.

2 bButtonInactiveLocal

TRUE – It’s a processed copy from the
INACTIVE button written on the PX2612

panel. This bit is activated 1 second after the
button pressing and deactivated immediately
at its releasing.

FALSE – The button INACTIVE isn’t pressed.

3 bAutoConfigLocal
TRUE – This diagnostics inform an automatic
configuration request, necessary to let the

6. Redundancy with NX3030 CPU

 292

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.Re
dCmdLoc.*

Description

Variable Bit

Not-Configured state in some situations.

FALSE – Automatic configuration request

disabled.

4 bTurnOnLocal

TRUE – This command produces an
equivalent action to the TURN ON PLCX

button on the PX2612 in the local PLC.

FALSE – The TURN ON PLCx button on the

local PLC isn’t pressed.

5 bStandbyLocal

TRUE – This command produces an
equivalent action to the STAND BY button on

the PX2612 in the local PLC.

FALSE – The STAND BY button on the local

PLC isn’t pressed.

6 bInactiveLocal

TRUE – This command produces an

equivalent action to the INACTIVE button on
the PX2612 in the local PLC.

FALSE – The INACTIVE button on the local

PLC isn’t pressed.

7 bResetNETStatisticsLocal

TRUE – This command resets the NETA /

NETB statistics (see substructure SNET_Stat
in RedDgnLoc and RedDgnRem). Such

statistics are failure and success counters in
synchronization services.

FALSE – The reset commands for the NETA
/ NETB statistics in the local PLC wasn’t

activated.

%QB(n+56)

0 bTestModeLocal

TRUE – This command puts the PX2612

panel in test mode, allowing its components
to be tested (LEDs, relays and buttons), as

explained in PX2612 Panel Test section. The
PX2612 test mode is only accepted when this
bit is on both PLCs. Therefore, for the

PX2612 to be in test mode, the PLC verifies if
RedCmdLoc.TestModeLocal and
RedCmdRem.TestModeLocal are both on.

The RedDgnLoc.RedPanelTestMode
diagnostic is turned on to inform that the
PX2612 is really in test mode. Normally the

user must turn off the TestModeLocal bit on
both PLCs as soon as the PX2612 tests are
concluded, but in case he forgets to do that,

the bit will be turned off automatically 15
minutes after being turned on.

FALSE – The command which puts the

PX2612 panel in test mode is deactivated.

1 bTestRelayLocal

TRUE – This command is used to test the
PX2612 NO relay and, consequently, the

external NC relay too, used to, eventually,
turn off the other PLC. This command is only
accepted while the PX2612 is in test mode,

being automatically switched off and ignored
if the PX2612 isn’t in this mode. Normally, the
user must turn off the TestRelayLocal bit as

soon as the relay test is concluded, but if it’s
forgotten, the bit is turned off as soon as the
test mode is finished. It’s important to stress

this command is only accepted in the Active
PLC, to avoid the Non-Active PLC to switch it
off.

FALSE – The command used to test the

PX2612 NO relay is deactivated.

2 bStandbyRemote

TRUE – This command produces an

equivalent action to the STAND BY button on
the PX2612 in the remote PLC.

FALSE – The STAND BY button on the

remote PLC isn’t pressed.

6. Redundancy with NX3030 CPU

 293

Direct Representation

Variable
AT variable

DG_NX4010.tRedundancy.Re
dCmdLoc.*

Description

Variable Bit

3 bInactiveRemote

TRUE – This command produces an
equivalent action to the INACTIVE button on

the PX2612 in the remote PLC.

FALSE – The INACTIVE button on the

remote PLC isn’t pressed.

4 bResetNETStatisticsRemote

TRUE – This command produces an
equivalent action to the

ResetNETStatisticsLocal button on the
PX2612 in the remote PLC

FALSE – The reset commands for the NETA
/ NETB statistics in the remote PLC wasn’t

activated.

5 a 7 bReserved[5..7] Reserved.

Table 6-10. Redundancy Commands

User Information Exchanged between PLCA and PLCB

The Diagnostics and Commands Exchange Synchronization service, in each MainTask cycle,

exchange the following data structures between both PLCs, using the NETA / NETB synchronism

channels:

 Redundancy Diagnostics (RedDgnLoc and RedDgnRem), already described in the Redundancy

Diagnostics Structure section

 Redundancy Commands (RedCmdLoc and RedCmdRem), already described in the Redundancy

Commands section

 User Information Exchanged between PLCA and PLCB (RedUsrLoc and RedUsrRem), which

are described in this section

The RedUsrLoc and RedUsrRem structures are simply a 128 bytes array, which utilization can be
freely defined by the user. They allow the user to transfer, each cycle, 128 bytes of information from

PLCA to PLCB, and other 128 bytes from PLCB to PLCA.

RedUsrRem is a copy from the other PLC RedUsrLoc, received through NETA / NETB. A specific
PLC writes information on RedUsrLoc, which are read in the RedUsrRem of the other PLC.

These data structures have many utilities. E.g. supposing the SCADA system is connected only to the

Active PLC and it’s desired to visualize some information from the Non-Active PLC. The Non-
Active PLC can put this information in these data structures. Among such information, for instance,

might be some not mapped diagnostics in RedDgnLoc and RedDgnRem.

Modbus Diagnostics used at Redundancy

To check for failure in all MODBUS Server configured in a MODBUS Client instance, there is a
specific diagnosis in each MODBUS Client instance configured. Table 6-11 displays the diagnostics

for this type of failure in a MODBUS Client instance called MODBUS_Symbol_Client.

Variable

DG_MODBUS_Symbol_Client.t
Diag.*

Description

bAllDevicesCommFailure

TRUE – All servers configured at

this Client shows error

FALSE – There is at least um

Server configured in this Client
that doesn’t shows error

Table 6-11. Modbus Client Diagnostic

6. Redundancy with NX3030 CPU

 294

When configured vital failure mode, this diagnostic is consulted and 3 seconds after it’s state change

from FALSE to TRUE, a switchover occurs if the other conditions for this event are satisfied.

Redundancy Event Log

MasterTool allows the observation of several logs for the Nexto PLC, among them the Redundancy

Event Log. These messages, specific for redundancy, registers in the System Log modifications in,

practically, every field of the diagnostics and redundancy commands structure data, which are the
following:

 RedDgnLoc

 RedDgnRem

 RedCmdLoc

 RedCmdRem

In case of diagnostic structures, only the following fields don’t generate diagnostics:

 wRedStateDuration

 wCycleCounter

 dwIECTimer

 SyncLinkStatistics NET_Stat

Each line presented in the log has the following columns:

 Timestamp: event time and date, with resolution in milliseconds

 Severity: information, warning, error or exception

 Description: text that describes the event

 Component: component that has generated the event, and in the Redundancy Event Log case, is

“Redundancy Management”

The “Description” column text has the following information:

 The diagnostic or command name which has been modified

 The new value assumed by this diagnostic or command

 The RedDgnLoclsGeneral_Diag.wCycleCounter value, which can be used as sequence auxiliary

information

 The RedDgnRem.sGeneral_Diag.CycleCounter, which can be used as sequence auxiliary

information

An example of the Description column can be the following:

RedDgnLoc.sGeneral_Diag.eRedStat = Active [Local cycle = 1234, Remote

cycle = 1233].

To access this screen, a double click must be done on the device (NX3030) in the device tree, and

then the tab “Log” must be selected. There’s a filter that allows selecting only the “Redundancy

Management” component, to show only the redundancy events.

ATTENTION:
Some diagnostics may point to possible failures during the redundant system initialization and in the

tasks first cycles. But in a correct system function these diagnostics no longer indicate errors right

after the system initialization.

PX2612 Panel Test

The PX2612 panel is composed by buttons, LEDs and relays. Many of these resources are not used

very often, thus are rarely tested and the defects may not be detected. It’s important to run tests from

time to time in order to verify if these resources are working properly, to avoid obscure failures to
prevent the PX2612 use when it’s necessary.

6. Redundancy with NX3030 CPU

 295

Test Mode Entry

The first step to test the PX2612 is to set it to test mode. This is done turning on the

DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit on both PLCs.

The PLC perceives that is in test mode when the following two bits are on:

 DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal (RedCmdLoc.TestModeLocal on in

this PLC)

 DG_NX4010.tRedundancy.RedCmdRem.bTestModeLocal (RedCmdLoc.TestModeLocal on in

the other PLC)

When both bits are on, the PLC turns on the

DG_NX4010.tRedundancy.RedDgnLoc.sGeneral_Diag.bRedPanelTestMode diagnostic, to inform

that the PX2612 is in test mode.

Test Mode Manual and Automatic Outputs

The user can finish the test mode manually; turning off the

DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit in both PLCs. Actually turning it off in

just one PLC is enough, as the test mode demands this bit to be on in both PLCs. However, this
practice is recommended.

In case the user forgets to turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit,

it’s automatically turned off 15 minutes after being turned on, finishing automatically the test mode.

LEDs Testing

Thus, during the test mode, the 6 LEDs must blink, losing its normal utility, which is showing the

redundancy state.

Buttons Test

At pressing a button in the test mode, a correspondent LED stops blinking, and remains on. The

following Table 6-12 presents the connection between the pressed button and the LED which remains

on.

Tested button Correspondent LED

TURN ON PLC A ACTIVE – PLC B

STAND-BY PLC A STAND-BY PLC A

INACTIVE PLC A INACTIVE PLC A

TURN ON PLC B ACTIVE – PLC A

STAND-BY PLC B STAND-BY PLC B

INACTIVE PLC B INACTIVE PLC B

Table 6-12. Connection between buttons and LEDs in the PX2612 button test

It can be observed that normally the LED is on the pressed button side, except for the TURN ON

PLCx.

Before the LED remains on, it’s necessary to hold the button for, at least, 1 second. The LED returns

to blinking after it’s released.

During the test mode, the buttons don’t allow the execution of functions which would be executed
out of this mode, such as to cause a redundancy state change.

Relay Test

To test the relays, it was created the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal bit.

At turning on this bit, if the PLC is in test mode and in Active state, it activates the relay, which must
cause the other PLC (Non-Active) switching off. Turning off the

6. Redundancy with NX3030 CPU

 296

DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal, the relay is released, allowing the other

PLC reactivating.

The command has no effect in the Non-Active PLC, to prevent it turns off the Active PLC.

The user must cause a switchover between PLCs (Active x Non-Active) in order to test the relay in

both PLCs.

When the PLC which was switched off is reactivated and restarted, it returns with the
DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal off, thus the test mode is canceled. The

DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit must be turned on again in this PLC

and set it to Active state before testing its relay.

When the test mode is finished, the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal
command bit is automatically turned off, in case the user has forgotten it on.

Suggested Sequence for PX2612 Test Executing

The following sequence is suggested in order to execute the PX2612 tests:

 Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit in both

PLCs (PLCA and PLCB).

 It must be observed if the 6 LEDs are blinking.

 Press, one at a time, the 6 buttons and verify if the correspondent LED stops blinking and remain

on while the button is pressed. It must be remembered the button must remain pressed for, at

least, one second before the LED stops blinking and remains on, and that the LED returns to
blinking after the button is released.

 Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the

Active PLC. It must be observed the Non-Active PLC switching off.

 Turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the

Active PLC. It must be observed the Non-Active PLC switching on.

 Wait until the Non-Active PLC is restarted and assumes the Stand-by state. The test mode is

active as the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit is turned off at the
restarting in Stand-by mode PLC.

 Cause a switchover between PLCs, pressing the Active PLC STAND-BY button. The normal use

of the STAND-BY button is possible because the test mode isn’t active.

 Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit in the new

Active PLC, which has just gotten out the Stand-by state. This way, the test mode is reactivated.

 Turn on the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the

Active PLC. It must be observed the Non-Active PLC switching off.

 Turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestRelayLocal command bit in the

Active PLC. It must be observed the Non-Active PLC reactivating.

 Turn off the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal command bit in the

Active PLC, to finish the test mode. It’s not necessary to do this in the Stand-by PLC, as it has
just initialized, with the DG_NX4010.tRedundancy.RedCmdLoc.bTestModeLocal bit off.

7. Maintenance

 297

7. Maintenance

Module Diagnostics

One feature of the Nexto Series is the abnormality diagnostic generation, whether they are failures,

errors or operation modes, allowing the operator to identify and solve problems which occurs in the

system easily.

The Nexto CPUs permit many ways to visualize the diagnostics generated by the system, which are:

 One Touch Diag

 Diagnostics via LED

 Diagnostics via WEB

 Diagnostics via Variables

 Diagnostics via Function Blocks

The first one is an innovating feature of Nexto series, which allows a fast access to the application

abnormal conditions. The second is purely visual, generated through two LEDs placed on the panel
(DG and WD) and also through the LEDs placed in the RJ45 connector (exclusive for Ethernet

connection). The next feature is the graphic visualization in a WEB page of the rack and the

respective configured modules, with the individual access allowed of the operation state and the
active diagnostics. The diagnostics are also stored directly in the CPU variables, either direct

representation (%Q) or attributed (AT variable), and can be used by the user application, for instance,

being presented in a supervisory system. The last ones present specific conditions of the system

functioning.

These diagnostics function is to point possible system installation or configuration problems, and

communication network problems or deficiency.

One Touch Diag

The One Touch Diagnostics , or single touch, is an exclusive feature the Nexto Series brings for the

programmable controllers. With this new concept the user can verify the diagnostics of any module

connected to the system straight on the CPU graphic display with a single touch on the module
Diagnostic Switch. This is a powerful diagnostic tool which can be used off-line (with no need of

supervisory or programming software) making easier to find and solve quickly possible problems.

The diagnostics key is placed on the CPU upper part, in an easy access place and, besides giving

active diagnostics, allows the access to the navigation menu, described in the CPU’s Informative and
Configuration Menu chapter. Figure 7-1 shows the CPU switch placement:

7. Maintenance

 298

Figure 7-1. Diagnostic Switch

With only a short touch, the CPU starts to show the bus diagnostics (when active, otherwise shows

the “NO DIAG” message). Initially, the Tag is visualized (configured in the module properties in the

MasterTool IEC XE software, following the IEC 61131-3 standard), in other words, the name
attributed to the CPU, and after that all diagnostics are shown, through CPU display messages. This

process is executed twice on the display. Everything occurs automatically as the user only has to

execute the first short touch and the CPU is responsible to show the diagnostics. The diagnostics of
other modules present on the bus are also shown on the CPU graphic display by a short press in the

diagnostic module button, in the same presentation model of diagnostics.

Figure 7-2 shows the process starting with the short touch, with the conditions and the CPU times

presented in smaller rectangles. It is important to stress the diagnostics may have more than one
screen, in other words, the specified time in the block diagram below is valid for one of them.

7. Maintenance

 299

Figure 7-2. CPU Diagnostics Visualization

Before all visualization process be concluded, it is just to give a short touch on the diagnostic switch,

at any moment, or press the diagnostic switch from any I/O module connected to the bus.

In case a long touch is executed, the CPU goes to navigation menu, which is described in the CPU’s

Informative and Configuration Menu chapter. Also, it is important to observe that the One Touch

Diag could be available when the module could be in Operational Mode.

Table 7-1 shows the difference between the short touch time, the long touch time and stuck button.

Touch type Minimum time Maximum time Indication condition

No touch - 59,99 ms -

Short touch 60 ms 0,99 s Release

Long touch 1 s 20 s More than 1s till 20 s

Locked Switch 20,01 s (∞)
Diagnostics indication, see on Table

7-6

Table 7-1. One Touch Time

The messages presented on the Nexto CPU graphic display, correspondent to the diagnostics, are

described in the Diagnostics via Variables section, on Table 7-6.

If any situation of stuck button occur in one of the I/O modules, the diagnostic button of this module
will stop of indicate the diagnostics on CPU graphic display when is pressed. In this case, the CPU

7. Maintenance

 300

will indicate that there is a module with active diagnostics. To remove this diagnostic from the CPU,

a hot swap must be done in the module where the diagnostic is active..

For further details on the procedure for viewing the diagnostics of the CPU or other bus modules, see
description in the User Manual Nexto Series - MU214000.

Diagnostics via LED

Nexto Series CPUs have a LED for diagnostic indication (LED DG) and a LED for watchdog event
indication (LED WD). Table 7-2 and Table 7-3 show the meaning of each state and its respective

descriptions:

DG (Diagnostic)

Green Red Description Causes Priority

Off Off Not used
No power supply

Hardware problem
-

On Off
All applications in execution mode

(Run)
- 3 (Low)

Off On
All applications in stopping mode

(Stop)
- 3 (Low)

Blinking 2x Off Bus modules with diagnostic
At least, a bus module, including the

CPU, is with an active diagnostic
1

Blinking 3x Off Data forcing

Some memory area is being forced

by the user through MasterTool IEC
XE

2

Off Blinking 4x
Configuration or hardware error in

the bus

The bus is damaged or is not

properly configured
0 (High)

Table 7-2. Description of the Diagnostic LEDs States

 WD (Watchdog)

Red LED Description Causes Priority

Off No watchdog indication Normal operation 3 (Low)

Blinking 1x Software watchdog User application watchdog 2

On Hardware watchdog
Damaged module and /or corrupted
operational system

1 (High)

Table 7-3. Description of the Watchdog LED States

Notes:

Software Watchdog: In order to remove the watchdog indication, make an application reset or turn

off and turn on the CPU again. This watchdog occurs when the user application execution time is
higher than the configured watchdog time.

The diagnostics can be checked in the Exception.wExceptionCode variable, see on Table 7-10.

Hardware Watchdog: In order to reset any watchdog indication, as in the WD LED or in the

Reset.bWatchdogReset operand, the module must be disconnected from the power supply. In order to
verify the application conditions in the module restart, see configurations on Table 4-1.

7. Maintenance

 301

RJ45 Connector LEDs

Both LEDs placed in the RJ45 connectors (in case of NX3010, only one connector), identified by

NET 1 and NET 2, help the user in the installed physical network problem detection, indicating the
network LINK speed and the existence of interface communication traffic. The LEDs meaning is

presented on Table 7-4.

Yellow Green Meaning

 Network LINK absent

 10 Mbytes/s network LINK

 100 Mbytes/s network LINK

X –

Ethernet network transmission or reception occurrence, for or to this IP
address. Blinks on Nexto CPU demand and not every transmission or

reception, in other words, it may blink on a lower frequency than the real
transmission or reception frequency.

Table 7-4. Ethernet LEDs Meaning

Diagnostics via WEB

Besides the previously presented features, the Nexto Series brings to the user a innovating access tool
to the system diagnostics and operation states, through a WEB page.

The utilization, and dynamics, is very intuitive and facilitates the user operations. The use of a

supervisory system can be replaced when it is restricted to system status verification.

To access the desired CPU WEB page, it is just to use a standard navigator (Internet Explorer 7 or
superior, Mozilla Firefox 3.0 or superior and Google Chrome 8 or superior) and type, on the address

bar, the CPU IP address (e.g. Ex.: http://192.168.1.1). First, the CPU information is presented,

according to Figure 7-3:

Figure 7-3. Initial Screen

http://192.168.1.1/

7. Maintenance

 302

There is also the “System Information” tab, which can be visualized through the Rack or the present

module list (option on the screen right side). While there is no application on the CPU, this page will

display a configuration with the largest available rack and a standard power supply, connected with
the CPU. When the Rack visualization is used, the modules that have diagnostics blink and assume

the red color, as shown on Figure 7-4. Otherwise a list with the system connected modules, Tags and

active diagnostics number is presented:

Figure 7-4. System Information

When the module with diagnostics is pressed, the module active(s) diagnostic(s) are shown, as

illustrated on Figure 7-5:

ATTENTION:
When a CPU is restarted and the application goes to exception in the system’s startup, the

diagnostics will not be valid. It is necessary to fix the problem which generates the application’s

exception so that the diagnostics are updated.

Figure 7-5. System Diagnostics

7. Maintenance

 303

In case the Status tab is selected, the state of all detailed diagnostics is shown on the screen, as

illustrated on Figure 7-6:

Figure 7-6. System Status

Besides, the user can choose to visualize three language options: Portuguese, English and Spanish. It

is just to change the upper right menu for the desired language. The correspondent Firmware
Updating tab is restricted to the user, in other words, it is for Altus internal use only.

Firmware Update tab is restricted to the user, that is, only for internal use of Altus. In cases where the

update is performed remotely (via a radio or satellite connection for example, the minimum speed of
the link must be 128Kbps).

Diagnostic Explorer

The Diagnostic Explorer is the inclusion of the diagnostics via WEB in the MasterTool IEC XE, in

order to make the process faster and direct.

The access to this feature happens in two ways:

 Accessing the “Diagnostic Explorer” option in the device tree, placed on the MasterTool IEC XE

screen left, and putting the correct IP in the field indicated on Figure 7-7. Remembering that for

the diagnostics page to be shown, the user must be connected to the CPU (Login chapter)

Figure 7-7. Diagnostic Explorer Screen

7. Maintenance

 304

 Right - clicking on the module and selecting “Diagnostic”, the Diagnostic Explorer is opened,

directing for the module status page

Diagnostics via Variables

The Nexto Series CPUs have many variables for diagnostic indication. There are data structures with
the diagnostics of all modules declared on the bus, mapped on the variables of direct representation

%Q, and defined symbolically through the AT directive, in the GVL Diagnostics created

automatically by the MasterTool IEC XE.

Table 7-5 summarizes the diagnostic byte/words division:

Byte Description

0 to 3 CPU summarized diagnostics.

4 to 558 CPU detailed diagnostics (NX3004, NX3005 and NX3010).

4 to 693 CPU detailed diagnostics (NX3020 and NX3030).

Table 7-5. CPU Diagnostics Division

Summarized Diagnostics

Table 7-6 shows the meaning of each CPU summarized diagnostic bit:

Direct Representation

Variable Diagnostics

Message

DG_Modulo.tSummarized.

* AT Variable
Description

Variable Bit

- - NO DIAG - There is no active diagnostic.

%QB(n)

0.0

CONFIG.
MISMATCH

bConfigMismatch
TRUE – There is a configuration
problem in the bus, as the module

inserted in the wrong position.

FALSE – The bus is configured

correctly.

0.1

ABSENT
MODULES

bAbsentModules
TRUE – One or more declared
modules are absent.

FALSE – All declared modules were
detected in the bus.

0.2

SWAPPED

MODULES
bSwappedModules

TRUE – TRUE – There are changed

modules in the bus.

FALSE – There are no changed

modules in the bus.

0.3

NON-
DECLARED

MODULES

bNonDeclaredModules
TRUE – One or more modules in the
bus were not declared in the

configuration.

 FALSE – All modules were declared.

0.4

MODULES W/

DIAGNOSTICS
bModulesWithDiagnostic

TRUE – One or more modules in the

bus are with active diagnostic.

FALSE – There is no active diagnostic
in the modules in the bus.

0.5

MODULES W/
FATAL ERROR

bModuleFatalError
TRUE – One or more modules in the
bus are in fatal error.

FALSE – all modules are working

properly.

0.6

MODULES W/

PARAM. ERROR
bModuleParameterError

TRUE – One or more modules in the

bus have parameterization error.

FALSE – All modules are
parameterized.

0.7

BUS ERROR

bWHSBBusError

TRUE – Master indication there is

failure in the WHSB bus.

FALSE – The WHSB bus is working

properly.

%QB(n+1) 1.0
HARDWARE

FAILURE
bHardwareFailure TRUE – CPU hardware failure.

7. Maintenance

 305

Direct Representation

Variable Diagnostics

Message

DG_Modulo.tSummarized.

* AT Variable
Description

Variable Bit

FALSE – The hardware is working
properly.

1.1

SOFTWARE

EXCEPTION
bSoftwareException

TRUE – One or more exceptions

generated by the software.

FALSE – No exceptions generated in

the software.

1.2

bReserved_10 Reserved

1.3

ERROR IN
MEMORY CARD

bMemoryCardError
TRUE – The memory card is inserted
in the CPU, but is not working properly.

FALSE – The memory card is working
properly.

1.4

COM1 CONF.

ERROR
bCOM1ConfigError

TRUE – Some error occurred during,

or after, the COM 1 serial interface
configuration.

FALSE – The COM 1 serial interface
configuration is correct.

1.5

COM2 CONF.

ERROR
bCOM2ConfigError

TRUE – Some error occurred during,

or after, the COM 2 serial interface
configuration.

FALSE – The COM 2 serial interface
configuration is correct.

1.6

NET1 CONF.

ERROR
bNET1ConfigError

TRUE – Some error occurred during,

or after, the NET 1 Ethernet interface
configuration.

FALSE – The NET 1 Ethernet interface

configuration is correct.

1.7

NET2 CONF.
ERROR

 bNET2ConfigError

 TRUE Some error occurred during or
after the NET 2 Ethernet interface.

FALSE – The NET 2 Ethernet interface

configuration is not correct.

%QB(n+2)

2.0

INVALID

DATE/TIME bInvalidDateTime
TRUE – The date or hour are invalid.

 FALSE – The date or hour are correct.

2.1

RUNTIME

RESET
bRTSReset

TRUE – The RTS (Runtime System)
has been restarted at least once. This

diagnostics is only cleared in the
system restart.

FALSE – The RTS (Runtime System)
is operating normally.

2.2

OTD SWITCH

ERROR

bOTDSwitchError

TRUE – True in case the OTD key has
been locked for more than 20 s at least

once while the CPU was energized.
This diagnostic is only cleared in the
system restart.

FALSE – The key is not currently

locked or was locked while the CPU
was energized.

2.3 a 2.7 bReserved_xx Reserved

%QB(n+3)

3.0
ABSENT RACK

bAbsentRacks

TRUE – One or more declared racks
are absent.

 FALSE – There are no absent racks.

3.1

DUPLICATED

RACK
bDuplicatedRacks

TRUE – There are racks with a

duplicated identification number.

FALSE – There are no racks with a

duplicated identification number.

3.2

INVALID RACK

bInvalidRacks

TRUE – There are racks with an

invalid identification number.

FALSE – There are no racks with an
invalid identification number.

3.3 NON bNonDeclaredRacks TRUE – There are racks with a non-

7. Maintenance

 306

Direct Representation

Variable Diagnostics

Message

DG_Modulo.tSummarized.

* AT Variable
Description

Variable Bit

DECLARED
RACK

declared identification number.

FALSE – There are no racks with a
non-declared identification number.

3.4

DUPLICATED

SLOT
bDuplicatedSlots

TRUE – There are some duplicated

slot address.

TRUE – There are no duplicated slot

address.

3.5 a 3.7 bReserved_xx Reserved

Table 7-6. CPU Summarized Diagnostics Table

Notes:

Direct Representation Variable: "n" represents the value set in the CPU through the MasterTool
IEC XE software, such as initial address diagnostics.

AT Directive: In the description of the symbolic variables which use the AT directive to make the

mapping in direct addressing variables, the syntax that must be put before the desired summarized

diagnostic is DG_Module.tSummarized, when the Module word is replaced by the used CPU. E.g.
for the incompatible configuration diagnostic it must be used the variable:

DG_NX3010.tSummarized.bConfigMismatch. The AT directive is a word reserved in the

programming software, used only for diagnostic indication.

Configuration Mismatch: The incompatible configuration diagnostic is generated if one or more

modules of the rack does not correspond to the declared one, so, in the absence or different modules

conditions. The modules inserted in the bus that were not declared in the project are not considered.

Swapped Modules: If only two modules are changed between themselves in the bus, then changed

diagnostic can be identified. Otherwise, the problem is treated as “Incompatible Configuration”.

Modules with Fatal Error: In case the modules with fatal error diagnostic is true, it must be verified

which is the problematic module in the bus and send it to Altus Technical Assistance, as it has
hardware failure.

Module with Parameterization Error: In case the parameterization error diagnostic is true, it must

be verified the module in the bus are correctly configured and if the firmware and MasterTool IEC
XE software version are correct. If the problem occurred when inserting a module on the bus, make

sure the module supports hot swapping.

Bus Error: Considered a fatal error, interrupting the access to the modules in the bus. In case the bus

error diagnostic is true, an abnormal situation due to the hot exchange configuration selected might
have occurred or a hardware problem in the bus communication lines, then, contact Altus Technical

Assistance.

Hardware Failure: In case the Hardware Failure diagnostic is true, the CPU must be sent to Altus
Technical Assistance, as it has problems in the RTC, auxiliary processor, or other hardware

resources.

Software Exception: In case the software exception diagnostic is true, the user must verify his
application to guarantee it is not accessing the memory wrongly. If the problem remains, the Altus

Technical Support sector must be consulted. The software exception codes are described next in the

CPU detailed diagnostics table.

Error in Memory Card: Memory Card diagnostics are only available for the NX3010, NX3020 and
NX3030 CPUs. Diagnostic Message: The diagnostics messages can be visualized by the CPU

graphic display using the OTD key or using the WEB, through the CPU diagnostics page.

Serial Interfaces: COM 2 interface diagnostics are only available for the NX3010, NX3020 and
NX3030 CPUs.

7. Maintenance

 307

Ethernet Interfaces: The diagnostics regarding to the NET 2 interface are only available for the

NX3020 and NX3030 CPUs.

Detailed Diagnostics

The tables below contain Nexto Series’ CPUs detailed diagnostics. It is important to have in mind the

observations below before consulting them:

 Visualization of the Diagnostics Structures: The Diagnostics Structures added to the Project can

be seen at the item “Library manager” of MasterTool IEC XE tree view. There, it is possible to
see all datatypes defined in the structure

 Counters: All CPU diagnostics counters return to zero when their limit value is exceeded

 Direct representation variable: “n” represents the value configured at the CPU through

MasterTool IEC XE as the initial diagnostics address

 AT Directive: At the description of symbolic variables that use the AT directive to map it in

direct mapping variables, the syntax to be used before the desired summarized diagnostic is

DG_Module.tSummarized., where the word Module must be replaced by the CPU being used.
For example, for the Configuration Mismatch diagnostic, use

DG_NX3010.tSummarized.bConfigMismatch. The AT directive is a reserved word of the

programmer, and some symbolic variables that use this directive indicate diagnostics.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QD(n+4) DWORD
Target.

dwCPUModel

NX3004 = 0x3004

NX3005 = 0x3005

NX3010 = 0x3010

NX3020 = 0x3020

NX3030 = 0x3030

%QB(n+8)
BYTE

ARRAY(4)

Target.

abyCPUVersion
Firmware version

%QB(n+12)
BYTE

ARRAY(4)

Target.

abyBootloaderVersion
Bootloader version

%QB(n+16)
BYTE

ARRAY(4)
Target.

abyAuxprocVersion
Auxiliary processor version

Table 7-7. Target Detailed Diagnostics Group Description

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*
AT Variable

Description
NX3004 NX3005 NX3010 NX3020 NX3030

%QX(n+20).0 BIT
Hardware.

bAuxprocFailure

Failure in the communication
between the auxiliary processor

and the principal processor.

%QX(n+20).1 BIT
Hardware.

bRTCFailure

The main processor is not

enabled to communicate with the
RTC (CPU’s clock).

%QX(n+20).2 BIT
Hardware.

bThermometerFailure

Failure in the communication

between the thermometer and the
main processor.

%QX(n+20).3 BIT
Hardware.

bLCDFailure

Failure in the communication
between the LCD screen and the

main processor

Table 7-8. Hardware Detailed Diagnostics Group Description

7. Maintenance

 308

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QW(n+21) WORD
Exception.

wExceptionCode

Exception code generated by the

RTS. See Table 7-29.

%QB(n+23) BYTE
Exception.

byProcessorLoad

Level, in percentage (%), of

charge in the processor.

Table 7-9. Exception Detailed Diagnostics Group Description

Note:

Exception Code: the code of the exception generated by the RTS (Runtime System) can be

consulted below:

Code Description Code Description

0x0000 There is no exception code. 0x0051 Access violation

0x0010
Watchdog time of the IEC task

expired (Software Watchdog).
0x0052 Privileged instruction

0x0012 I/O configuration error.
0x0053 Page failure

0x0054 Stack overflow

0x0013
Checksum error after the program
download.

0x0055 Invalid disposition

0x0014 Fieldbus error. 0x0056 Invalid maneuver

0x0015 I/O updating error. 0x0057 Protected page

0x0016 Cycle time (execution) exceeded. 0x0058 Double failure

0x0017 Program online updating too long. 0x0059 Invalid OpCode

0x0018 External references not resolved. 0x0100 Data type misalignment

0x0019 Download rejected. 0x0101 Arrays limit exceeded

0x001A
Project not loaded, as the retentive
variables cannot be reallocated.

0x0102 Division by zero

0x001B Project not loaded and deleted. 0x0103 Overflow

0x001C Out of memory stack. 0x0104 Cannot be continued

0x001D
Retentive memory is corrupted and

cannot be mapped.
0x0105

Watchdog in the processor load of all

IEC task detected.

0x001E
Project can be loaded but causes a

drop later on.
0x0150 FPU: Not specified error

0x0021
Target of startup application does not

match to the current target.
0x0151 FPU: Operand is not normal.

0x0022 Scheduled tasks error. 0x0152 FPU: Division by zero

0x0023
Downloaded file Checksum with
error.

0x0153 FPU: Inexact result

0x0024
Retentive identity is not

correspondent to the current identity
of the boot project program.

0x0154 FPU: Invalid operation

0x0025 IEC task configuration failure. 0x0155 FPU: Overflow

0x0026
Application working with wrong
target.

0x0156 FPU: Stack verification

0x0050 Illegal instruction. 0x0157 FPU: Underflow

Table 7-10. RTS Exception codes

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.* AT

Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

NA
%QB

(n+24)
NA BYTE

WebVisualization.
byConnectedClients

Clients number connected
to the WebVisualization.

Table 7-11. WebVisualization Detailed Diagnostics Group Description

7. Maintenance

 309

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QB(n+25) BYTE
RetainInfo.

byCPUInitStatus

CPU Startup status:

01: Hot start

02: Warm Start

03: Cold Start

PS.: These variables are restarted

in all startup.

%QW(n+26) WORD
RetainInfo.

wCPUColdStartCounter

Counter of cold startups:

It will be added only due hot

removal of the CPU in the bus and
not due to the command of Cold
Reset from MasterTool IEC XE. (0

to 65535)

%QW(n+28) WORD
RetainInfo.

wCPUWarmStartCounte

r

Counter of hot startups:

It will be added only during a
sequence of startup of the system

and not due the command of Hot
Reset from MasterTool IEC XE. (0
to 65535)

%QW(n+30) WORD
RetainInfo.

wCPUHotStartCounter

Counter of disorders lower than

the time of support to failures in
the CPU power supply. (0 to
65535)

%QW(n+32) WORD
RetainInfo.

wRTSResetCounter

Counter of reset performed by the

RTS (Runtime System). (0 to
65535)

%QW(n+34) WORD RetainInfo.wReserved_0 Reserved

Table 7-12. RetainInfo Detailed Diagnostics Group Description

CPU Direct Representation Variable

Size
DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QX(n+36).0 BIT
Reset.

bBrownOutReset

The CPU was restarted due a
failure in the power supply in the

last startup.

%QX(n+36).1 BIT
Reset.

bWatchdogReset

The CPU was restarted due the

active watchdog in the last
startup.

Table 7-13. Reset Detailed Diagnostics Group Description

Note:

Brownout Reset: The brownout reset diagnostic is only true when the power supply exceed the

minimum limit required in its technical characteristics, remaining in low-voltage, i.e. without
undergoing any interrupt. The CPU will identify the drop in supply and will indicate the power

failure diagnostic. When the voltage is reestablished, the CPU will automatically reset and will

indicate the brownout reset diagnostic.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*
AT Variable

Description
NX3004 NX3005 NX3010 NX3020 NX3030

%QX(n+37).0 BIT
Thermometer.

bOverTemperatureAlar

m

Alarm generated due internal

temperature at 85 °C or above it.

%QX(n+37).1 BIT

Thermometer.

bUnderTemperatureAlar
m

Alarm generated due internal
temperature at 0º or under it.

%QD(n+38) DINT
Thermometer.

diTemperature

Temperature read in the internal

sensor of the CPU.

Table 7-14. Thermometer Detailed Diagnostics Group Description

7. Maintenance

 310

Note:

Temperature: In order to see the temperature directly in the memory address, a conversion must be

made, since the data size is DINT and monitoring is done in 4 bytes. Therefore, it’s recommended to
use the associated symbolic variable, because it already provides the final temperature value.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QB(n+42) BYTE
Serial.COM1.

byProtocol

Protocol selected in the COM 1:

00: Without protocol

01: MODBUS RTU Master

02: MODBUS RTU Slave

03: Other protocol

%QD(n+43) DWORD
Serial.COM1.
dwRXBytes

Counter of characters received
from COM 1 (0 to 4294967295)

%QD(n+47) DWORD
Serial.COM1.

dwTXBytes

Counter of characters transmitted

from COM 1 (0 to 4294967295)

%QW(n+51) WORD
Serial.COM1.

wRXPendingBytes

Number of characters left in the

reading buffer in COM 1. (0 to
65535)

%QW(n+53) WORD
Serial.COM1.

wTXPendingBytes

Number of characters left in the

transmission buffer in COM 1. (0
to 65535)

%QW(n+55) WORD
Serial.COM1.

wBreakErrorCounter
These counters are restarted in
the following conditions:

- Energizing

- Configuration of the COM 1

serial port

- Removal of RX and TX queues

PS.: When the CPU is set with

parity Without Parity, the counter
of errors of parity is not
incremented in case it receives a

different parity. In this case, it will
be indicated an error of frame.
The maximum value of each

counter is 65535.

%QW(n+57) WORD
Serial.COM1.

wParityErrorCounter

%QW(n+59) WORD
Serial.COM1.

wFrameErrorCounter

%QW(n+61) WORD
Serial.COM1.

wRXOverrunCounter

%QW(n+63) WORD
Serial.COM1.

wReserved_0
Reserved

%QW(n+65) WORD
Serial.COM1.

wReserved_1
Reserved

Table 7-15. Serial COM 1 Detailed Diagnostics Group Description

Note:

Parity Error Counter: When the serial COM 1 is configured Without Parity, this error counter

won’t be incremented when it receives a message with a diferent parity. In this case, a frame error
will be indicated.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

NA %QB(n+67) BYTE
Serial.COM2.

byProtocol

Protocol selected in the COM 2:

00: Without protocol

01: MODBUS RTU Master

02: MODBUS RTU Slave

03: Other protocol

NA
%QD(n+68) DWORD

Serial.COM2.

dwRXBytes

Counter of characters received

from COM 2. (0 to 4294967295)

NA

%QD(n+72) DWORD
Serial.COM2.

dwTXBytes

Counter of characters transmitted

through COM 2. (0 to
4294967295)

NA
%QW(n+76) WORD

Serial.COM2.
wRXPendingBytes

Number of characters left in the

reading buffer in COM 2. (0 to

7. Maintenance

 311

65535)

NA
%QW(n+78) WORD

Serial.COM2.

wTXPendingBytes

Number of characters left in the

transmission buffer in COM 2. (0
to 65535)

NA
%QW(n+80) WORD

Serial.COM2.
wBreakErrorCounter

These counters are restarted in
the following conditions:

- Startup

- Configuration of COM 2 serial
port

- Removal of RX and TX queues

PS.: When the CPU is set with

parity Without Parity, the counter
of errors of parity is not increased
in case it receives a different

parity. In this case, it will be
indicated a frame error. The
maximum value of each counter is

65535.

NA
%QW(n+82) WORD

Serial.COM2.

wParityErrorCounter

NA
%QW(n+84) WORD

Serial.COM2.

wFrameErrorCounter

NA

%QW(n+86) WORD
Serial.COM2.

wRXOverrunCounter

NA
%QW(n+88) WORD

Serial.COM2.

wReserved_0
Reserved

NA
%QW(n+90) WORD

Serial.COM2.
wReserved_1

Reserved

Table 7-16. Serial COM 2 Detailed Diagnostics Group Description

Note:

Parity Error Counter: When the serial COM 2 is configured Without Parity, this error counter

won’t be incremented when it receives a message with a different parity. In this case, a frame error

will be indicated.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QX(n+92).0 BIT
Ethernet.NET1.

bLinkDown

Indicates the state of the link in

NET 1.

%QW(n+93) WORD
Ethernet.NET1.

wProtocol

Selected protocol in NET 1:

00: Without protocol

%QX(n+93).0 BIT

Ethernet.NET1.

wProtocol.bMODBUS_R
TU_ETH_Client

MODBUS RTU Client via TCP

%QX(n+93).1 BIT
Ethernet.NET1.

wProtocol.bMODBUS_E
TH_Client

MODBUS TCP Client

%QX(n+93).2 BIT
Ethernet.NET1.

wProtocol.bMODBUS_R

TU_ETH_Server

MODBUS RTU Server via TCP

%QX(n+93).3 BIT
Ethernet.NET1.

wProtocol.bMODBUS_E
TH_Server

MODBUS TCP Server

%QB(n+95)
STRING(1

5)
Ethernet.NET1.

szIP
IP NET 1 Address

%QB(n+111)
STRING(1

5)

Ethernet.NET1.

szMask
NET 1 Subnet Mask

%QB(n+127)
STRING(1

5)

Ethernet.NET1.

szGateway
NET 1 Gateway Address

%QB(n+143)
STRING(1

7)
Ethernet.NET1.

szMAC
MAC NET 1 Address

%QB(n+161)
BYTE

ARRAY(4)

Ethernet.NET1.

abyIP
IP NET 1 Address

%QB(n+165)
BYTE

ARRAY(4)

Ethernet.NET1.

abyMask
NET 1 Subnet Mask

%QB(n+169)
BYTE

ARRAY(4)

Ethernet.NET1.

abyGateway
NET 1 Gateway Address

%QB(n+173)
BYTE

ARRAY(6)
Ethernet.NET1.

abyMAC
MAC NET 1 Address

7. Maintenance

 312

%QD(n+179) DWORD
Ethernet.NET1.

dwPacketsSent

Counter of sent packages through

NET 1 port. (0 to 4294967295)

%QD(n+183) DWORD
Ethernet.NET1.

dwPacketsReceived

Counter of received packages
through NET 1 port. (0 to

4294967295)

%QD(n+187) DWORD
Ethernet.NET1.

dwBytesSent

Counter of sent bytes through

NET 1 port. (0 to 4294967295)

%QD(n+191) DWORD
Ethernet.NET1.

dwBytesReceived
Counter of received bytes through
NET 1 port. (0 to 4294967295)

%QW(n+195) WORD
Ethernet.NET1.

wTXErrors

Counter of errors of transmission

through NET 1 port. (0 to 65535)

%QW(n+197) WORD
Ethernet.NET1.

wTXFIFOErrors

Counter of errors in the buffer of

transmission through NET 1 port.
(0 to 65535)

%QW(n+199) WORD
Ethernet.NET1.

wTXDropErrors

Counter of connection losses in

the transmission through NET 1
port. (0 to 65535)

%QW(n+201) WORD
Ethernet.NET1.

wTXCollisionErrors

Counter of errors of collision in the

transmission through NET 1 port .
(0 to 65535)

%QW(n+203) WORD
Ethernet.NET1.

wTXCarrierErrors

Counter of errors of the carrier in

the transmission through NET 1
port. (0 to 65535)

%QW(n+205) WORD
Ethernet.NET1.

wRXErrors
Counter of errors of reception
through NET 1 port. (0 to 65535)

%QW(n+207) WORD
Ethernet.NET1.

wRXFIFOErrors

Counter of errors in the buffer of

reception through NET 1 port. (0
to 65535)

%QW(n+209) WORD
Ethernet.NET1.
wRXDropErrors

Counter of connection losses in
the reception through NET 1 port.

(0 to 65535)

%QW(n+211) WORD
Ethernet.NET1.

wRXFrameErrors

Counter of errors of frame in the

reception through NET 1 port. (0
to 65535)

%QW(n+213) WORD
Ethernet.NET1.

wMulticast

Counter of multicast packages

through NET 1. (0 to 65535)

%QW(n+215) WORD
Ethernet.NET1.

wReserved_0
Reserved

%QW(n+217) WORD
Ethernet.NET1.

wReserved_1
Reserved

Table 7-17. Ethernet NET 1 Detailed Diagnostics Group Description

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

NA %QX(n+219).0 BIT
Ethernet.NET2.

bLinkDown
Indicates the link state in NET 2.

NA %QW(n+220) WORD
Ethernet.NET2

.wProtocol

 Protocol selected in NET 2:

 00: Without protocol

NA %QX(n+220).0 BIT

Ethernet.NET2.

wProtocol.bMODBUS_R
TU_ETH_Client

MODBUS RTU Client via TCP

NA %QX(n+220).1 BIT
Ethernet.NET2.

wProtocol.bMODBUS_E
TH_Client

MODBUS TCP Client

NA %QX(n+220).2 BIT
Ethernet.NET2.

wProtocol.bMODBUS_R

TU_ETH_Server

MODBUS RTU Server via TCP

NA %QX(n+220).3 BIT
Ethernet.NET2.

wProtocol.bMODBUS_E
TH_Server

MODBUS TCP Server

NA %QB(n+222)
STRING

(15)
Ethernet.NET2.

szIP
IP NET 2 Address

NA %QB(n+238) STRING Ethernet.NET2. NET 2 Subnet Mask

7. Maintenance

 313

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

(15) szMask

NA %QB(n+254)
STRING

(15)

Ethernet.NET2.

szGateway
NET 2 Gateway Address

NA %QB(n+270)
STRING

(17)

Ethernet.NET2.

szMAC
NET 2 MAC Address

NA %QB(n+288)
BYTE

ARRAY(4)
Ethernet.NET2.

abyIP
IP NET 2 Address

NA %QB(n+292)
BYTE

ARRAY(4)

Ethernet.NET2.

abyMask
NET 2 Subnet Mask

NA %QB(n+296)
BYTE

ARRAY(4)

Ethernet.NET2.

abyGateway
NET 2 Gateway Address

NA %QB(n+300)
BYTE

ARRAY(6)

Ethernet.NET2.

abyMAC
NET 2 MAC Address

NA %QD(n+306) DWORD
Ethernet.NET2.
dwPacketsSent

Counter of packages sent through
NET 2 port. (0 to 4294967295)

NA %QD(n+310) DWORD
Ethernet.NET2.

dwPacketsReceived

Counter of packages received

through NET 2 port. (0 to
4294967295)

NA %QD(n+314) DWORD
Ethernet.NET2.
dwBytesSent

Counter of bytes sent through
NET 2 port. (0 to 4294967295)

NA %QD(n+318) DWORD
Ethernet.NET2.

dwBytesReceived

Counter of bytes received through

NET 2 port. (0 to 4294967295)

NA %QW(n+322) WORD
Ethernet.NET2.

wTXErrors

Counter of errors of transmission

through NET 2 port. (0 to 65535)

NA %QW(n+324) WORD
Ethernet.NET2.
wTXFIFOErrors

Counter of errors in the buffer of

transmission through NET 2 port.
(0 to 65535)

NA %QW(n+326) WORD
Ethernet.NET2.

wTXDropErrors

Counter of connection losses

in the transmission through NET 2
port. (0 to 65535)

NA %QW(n+328) WORD
Ethernet.NET2.

wTXCollisionErrors

Counter of errors of collision in the

transmission through NET 2 port.
(0 to 65535)

NA %QW(n+330) WORD
Ethernet.NET2.

wTXCarrierErrors

Counter of errors of the carrier in
the transmission through NET 2

port. (0 to 65535)

NA %QW(n+332) WORD
Ethernet.NET2.

wRXErrors

Counter of errors of reception

through NET 2 port. (0 to 65535)

NA %QW(n+334) WORD
Ethernet.NET2.
wRXFIFOErrors

Counter of errors in the buffer of
reception through NET 2 port. (0

to 65535)

NA %QW(n+336) WORD
Ethernet.NET2.

wRXDropErrors

Counter of connection losses in

the reception through NET 2 port.
(0 to 65535)

NA %QW(n+338) WORD
Ethernet.NET2.

wRXFrameErrors

Counter of errors of frame in the
reception through NET 2 port. (0

to 65535)

NA %QW(n+340) WORD
Ethernet.NET2.

wMulticast

Counter of multicast packages

through NET 2 port. (0 to 65535)

NA %QW(n+342) WORD
Ethernet.NET2.
wReserved_0

Reserved

NA %QW(n+344) WORD
Ethernet.NET2.

wReserved_1
Reserved

Table 7-18. Ethernet NET 1 Detailed Diagnostics Group Description

7. Maintenance

 314

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QB(n+219) %QB(n+346) BYTE
UserFiles.

byMounted

Indicates if the memory used for

recording user files is able to
receive data.

%QD(n+220) %QD(n+347) DWORD
UserFiles.

dwFreeSpacekB
Free memory space for user files
in Kbytes.

%QD(n+224) %QD(n+351) DWORD
UserFiles.

dwTotalSizekB

Storage capacity of the memory of

user files in Kbytes.

%QB(n+228) %QB(n+355) BYTE UserFiles.byReserved_0 Reserved

Table 7-19. UserFiles Detailed Diagnostics Group Description

Note:

User Partition: The user partition is a memory area reserved for the storage of data in the CPU. For

example: files with PDF extension, files with DOC extension and other data.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QB(n+229) %QB(n+356) BYTE
UserLogs.

byMounted

Status of memory in which are

inserted the user logs.

%QW(n+230) %QW(n+357) WORD
UserLogs.

wFreeSpacekB

Free space in the memory of user

logs in Kbytes.

%QW(n+232) %QW(n+359) WORD
UserLogs.

wTotalSizekB
Storage capacity of the memory of
user logs in Kbytes.

%QB(n+234) %QB(n+361) BYTE
UserLogs.

byReserved_0
Reserved

Table 7-20. UserLogs Detailed Diagnostics Group Description

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*
AT Variable

Description
NX3004 NX3005 NX3010 NX3020 NX3030

NA
%QB

(n+235)
%QB(n+362) BYTE

MemoryCard.
byMounted

Status of the Memory Card:

00: Memory card not mounted

01: Memory card inserted and

mounted

NA
%QX(n+

236).0
%QX(n+363).0 BIT

MemoryCard.
bMemcardtoCPUEnable

d

Protection level of the Memory
Card:

Data reading of the memory card
by the authorized CPU.

NA
%QX(n+

236).1
%QX(n+363).1 BIT

MemoryCard.
bCPUtoMemcardEnable

d

Data writing in the memory card

by the authorized CPU.

NA
%QD

(n+237)
%QD(n+364) DWORD

MemoryCard.

dwFreeSpacekB

Free space in the Memory Card in

Kbytes.

NA
%QD

(n+241)
%QD(n+368) DWORD

MemoryCard.
dwTotalSizekB

Storage capacity of the Memory
Card in Kbytes.

Table 7-21. MemoryCard Detailed Diagnostics Group Description

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*
AT Variable

Description
NX3004 NX3005 NX3010 NX3020 NX3030

%QB(n+245) %QB(n+372) BYTE
WHSB.

byHotSwapAndStartupS
tatus

Informs the abnormal situation in
the bus which caused the

application stop for each mode of
hot swapping. See Table 7-23 for
more information

%QB(n+246) %QB(n+373) BYTE WHSB.byReserved_0 Reserved

7. Maintenance

 315

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QD(n+247) %QD(n+374)

DWORD

ARRAY
(32)

WHSB.

adwRackIOErrorStatus

Identification of errors in I/O

modules, individually:

The Array[0..31] represents 32
backplane racks, being each
position made up by 32 bits. Each

bit of these DWORDs represents
the bus position, being the Bit-0
equivalent to position 0. So, it is

performed a OR logic operation
among four summarized
diagnostics and the operational

state of a certain position, and if
the result is positive, the analogic
bit will be true.

Under, the considered
diagnostics:

Incompatible configuration
(bConfigMismatch)

Absent modules
(bAbsentModules)

Exchanged modules
(bSwappedModules)

Modules with fatal error
(bModuleFatalError)

Module is not in Operational Mode

%QD(n+375) %QD(n+502)

DWORD

ARRAY
(32)

WHSB.

adwModulePresenceSta
tus

Status of presence of declared I/O
modules in buses, individually:

The Array[0..31] represents 32
backplane racks, being each

position made up by 32 bits. Each
bit of this DWORD represents a
position in the bus, being the Bit-0

equivalent to position 0. So, if the
module is present, the bit will be
true.

PS.: This diagnostic is valid for all
modules, except for non-

redundant power supplies, non-
declared modules and CPUs, that
is, do not present a presence in

the bus in its respective positions
(bit remains in false).

%QB(n+503) %QB(n+630) BYTE
WHSB.

byWHSBBusErrors

Counter of failures in the WHSB
bus. This counter is restarted in

the energization. (0 to 255)

Table 7-22. WHSB Detailed Diagnostics Group Description

Notes:

Bus modules error diagnostic: Each DWORD from this diagnostic array represents a rack, whose

positions are represented by the bits of these DWORDS. So, Bit-0 of the DWORD-0 is equivalent to

position zero of the rack with address zero. Each one of these Bits is the result of an OR logic
operation between the Incompatible Configuration (bConfigMismatch), absent modules

(bAbsentModules), swapped modules (bSwappedModules), module with fatal error

(bModuleFatalError) diagnostics and the operational state of the module in a certain position.

Module presence status: Each DWORD from this diagnostic array represents a rack, whose
positions are represented by the bits of these DWORDS. So, Bit-0 from DWORD-0 is equivalent to

position zero of the rack with address zero. So, if a module is present, this bit will be true. It’s

important to notice that this diagnostic is valid for all modules, except power supplies, CPUs and
non-declared modules, e.g. those that are not in the rack on the respective position (bit remains in

false).

7. Maintenance

 316

Situations in which the Application Stops: The codes for the possible situations in which the

application stop can be consulted below:

Code Enumerable Description

00 INITIALIZING This state is presented while other states are not ready.

01 RESET_WATCHDOG
Application in Stop Mode due to hardware watchdog reset or runtime
reset, when the option “Start User Application After a Watchdog Reset”

is unmarked.

02
ABSENT_MODULES_HOT_SWAP_

DISABLED

Application in Stop Mode due to Absent Modules diagnostic being set

when the Hot Swap Mode is disabled or disabled, for declared
modules only.

03
CFG_MISMATCH_HOT_SWAP_DIS

ABLED

Application in Stop Mode due to Configuration Mismatch diagnostic

being set when the Hot Swap Mode is disabled or disabled, for
declared modules only.

04
ABSENT_MODULES_HOT_SWAP_

STARTUP_CONSISTENCY

Application in Stop Mode due to Absent Modules diagnostic being set
when the Hot Swap Mode is enabled with startup consistency or

enabled with startup consistency for declared modules only.

05
CFG_MISMATCH_HOT_SWAP_ST

ARTUP_CONSISTENCY

Application in Stop Mode due to Incompatible Configuration diagnostic

being set when the Hot Swap Mode is enabled with startup consistency
or enabled with startup consistency for declared modules only.

06 APPL_STOP_ALLOWED_TO_RUN
Application in Stop Mode and all consistencies executed successfully.

The application can be set to Run Mode.

07
APPL_STOP_MODULES_NOT_RE

ADY

Application in Stop Mode and all consistencies executed successfully,

but the I/O modules are not able to start the system. It is not possible to
set the application to Run Mode.

08
APPL_STOP_MODULES_GETTING

_READY_TO_RUN

Application in Stop Mode and all consistencies executed successfully.
The I/O modules are being prepared to start the system. It is not

possible to set the application to Run Mode.

09 NORMAL_OPERATING_STATE Application in Run Mode.

10 MODULE_CONSISTENCY_OK Internal usage.

11
APPL_STOP_DUE_TO_EXCEPTIO

N
Application in Stop Mode due to an exception in the CPU.

12
DUPLICATED_SLOT_HOT_SWAP_

DISABLED

Application in Stop Mode due to Duplicated Slots diagnostic being set
when the Hot Swap Mode is disabled or disabled, for declared modules

only.

13
DUPLICATED_SLOT_HOT_SWAP_

STARTUP_CONSISTENCY

Application in Stop Mode due to Duplicated Slots diagnostic being set

when the Hot Swap Mode is enabled with startup consistency or
enabled with startup consistency for declared modules only.

14
DUPLICATED_SLOT_HOT_SWAP_

ENABLED
Application in Stop Mode due to Duplicated Slots diagnostic being set
when the Hot Swap Mode is enabled with startup consistency

15
NON_DECLARED_MODULE_HOT_

SWAP_STARTUP_CONSISTENCY

Application in Stop Mode due to Non Declared Modules diagnostic

being set when the Hot Swap Mode is enabled with startup
consistency.

16
NON_DECLARED_MODULE_HOT_

SWAP_DISABLED
Application in Stop Mode due to Non Declared Modules diagnostic
being set when the Hot Swap Mode is disabled.

Table 7-23. Codes of the Situations in which the Application Stops

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*
AT Variable

Description
NX3004 NX3005 NX3010 NX3020 NX3030

%QB(n+504) %QB(n+631) BYTE
Application.
byCPUState

Informs the operation state of the
CPU:

01: All user applications are in
Start Mode.

03: All user application is in Stop
Mode.

%QX(n+505).0 %QX(n+632).0 BIT
Application.

bForcedIOs

There is one or more forced I/O

points.

Table 7-24. Application Detailed Diagnostics Group Description

7. Maintenance

 317

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QX(n+532).0 %QX(n+633).0 BIT
SNTP.

bServiceEnabled
SNTP Service enabled.

%QB(n+533) %QB(n+634) BYTE
SNTP.

byActiveTimeServer

Indicates which server is active:

00: None active server.

01: Active Primary Server.

02: Active Secondary Server.

%QW(n+534) %QW(n+635) WORD

SNTP.

wPrimaryServerDownCo
unt

Counter of times in which the

primary server is unavailable. (0 to
65535)

%QW(n+536) %QW(n+637) WORD
SNTP.

wSecondaryServerDow
nCount

Counter of times in which the

secondary server is unavailable.
(0 to 65535)

%QD(n+538) %QD(n+639) DWORD
SNTP.

dwRTCTimeUpdatedCo

unt

Counter of times the RTC was
updated by the SNTP service. (0

to 4294967295)

%QB(n+542) %QB(n+643) BYTE
SNTP.

byLastUpdateSuccessfu
l

Indicates status of the last update:

00: It was not updated.

01: Last update failed.

02: Last update was successfully.

%QB(n+543) %QB(n+644) BYTE
SNTP.

byLastUpdateTimeServ

er

Indicates which server was used

in the last update:
00: None update.

01: Primary Server.

02: Secondary Server.

%QB(n+544) %QB(n+645) BYTE
SNTP.

sLastUpdateTime.byDay
OfMonth

Day of the last update of the RTC.

%QB(n+545) %QB(n+646) BYTE
SNTP.sLastUpdateTime

.byMonth
Month of the last update of the
RTC.

%QW(n+546) %QW(n+647) WORD
SNTP.sLastUpdateTime

.wYear

Year of the last update of the

RTC.

%QB(n+548) %QB(n+649) BYTE
SNTP.sLastUpdateTime

.byHours

Hour of the last update of the

RTC.

%QB(n+549) %QB(n+650) BYTE
SNTP.sLastUpdateTime

.byMinutes
Minute of the last update of the
RTC.

%QB(n+550) %QB(n+651) BYTE SNTP.bReservedAlign Reserved

%QB(n+551) %QB(n+652) BYTE
SNTP.sLastUpdateTime

.bySeconds
Second of the last update of RTC.

%QW(n+552) %QW(n+653) WORD
SNTP.sLastUpdateTime

.wMilliseconds

Millisecond of the last update of

RTC.

%QW(n+554) %QW(n+655) WORD SNTP.wReserved_0 Reserved

%QW(n+556) %QW(n+657) WORD SNTP.wReserved_1 Reserved

Table 7-25. SNTP Detailed Diagnostics Group Description

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

NA %QX(n+659).0 BIT
SOE[1].

bConnectionStatus
Connection status of client 01

NA %QX(n+659).1 BIT
SOE[1].

bOverflowStatus

Queue status of client events 01

FALSE – There was no overflow

TRUE – Exceeded queue limit

NA %QB(n+660) BYTE
SOE[1].

byReserved_0
Reserved

NA %QW(n+661) WORD
SOE[1].

wEventsCounter
Counter of events in the client
queue 01

NA %QX(n+663).0 BIT
SOE[2].

bConnectionStatus
Connection status of client 02

7. Maintenance

 318

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

NA %QX(n+663).1 BIT
SOE[2].

bOverflowStatus

Queue status of client events 02

FALSE – There was no overflow

TRUE – Exceeded queue limit

NA %QB(n+664) BYTE
SOE[2].

byReserved_0
Reserved

NA %QW(n+665) WORD
SOE[2].

wEventsCounter

Counter of events in the client

queue 02

Table 7-26. SOE Detailed Diagnostics Group Description

Notes:

Synchronism of the SOE diagnostics group in systems operating with Half-Cluster

redundancy: When a project is configured with Half-Cluster redundancy, the diagnostics of the SOE

group are not synchronized between the two Half-Clusters.

SOE Diagnostics group update during transition to Active state: When a Half-Cluster passes
from Stand-by to Active state the diagnostics of the SOE group starts be to updated on the third

cycle.

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*
AT Variable

Description
NX3004 NX3005 NX3010 NX3020 NX3030

%QD(n+506) %QD(n+667) DWORD
Rack.

dwAbsentRacks

Each bit presents a rack

identification number, if the bit is
TRUE, it means the rack is
absent.

%QD(n+510) %QD(n+671) DWORD
Rack.

dwDuplicatedRacks

Each bit presents a rack
identification number, if the bit is

TRUE, it means that more than
one rack is with the same
identification number.

%QD(n+514) %QD(n+675) DWORD
Rack.

dwNonDeclaredRacks

Each bit presents a rack

identification number, if the bit is
TRUE, it means there is a rack
configured with a non-declared

identification number.

%QW(n+518) %QW(n+679) WORD Rack.wReserved_0 Reserved

Table 7-27. Rack Detailed Diagnostics Group Description

CPU Direct Representation Variable
Size

DG_Modulo.tDetailed.*

AT Variable
Description

NX3004 NX3005 NX3010 NX3020 NX3030

%QD(n+520) %QD(n+681) DWORD
ApplicationInfo.

dwApplicationCRC

32 bits CRC of Application. When

the application is modified and
sent to the CPU, a new CRC is
generated

%QD(n+524) %QD(n+685) DWORD
ApplicationInfo.

dwReserved_0
Reserved

%QD(n+528) %QD(n+689) DWORD
ApplicationInfo.

dwReserved_0
Reserved

Table 7-28. ApplicationInfo Detailed Diagnostics Group Description

Diagnostics via Function Blocks

The function blocks allow the visualization of some parameters which cannot be accessed otherwise.
The three functions regarding advanced diagnostics are in the Nexto Standard library and are

described below.

7. Maintenance

 319

GetTaskInfo

This function returns the task information of a specific application.

Figure 7-8. GetTaskInfo Function

Below, the parameters that must be sent to the function for it to return the application information are

described.

Input parameter Type Description

psAppName POINTER TO STRING Application name

psTaskName POINTER TO STRING Task name

pstTaskInfo POINTER TO stTaskInfo Pointer to receive the application information

Table 7-29. GetTaskInfo Input Parameters

The data returned by the function, through the pointer informed in the input parameters are described

on Table 7-30.

Returned Parameters Size Description

dwCurScanTime DWORD Task cycle time (execution) with 1µs resolution

dwMinScanTime DWORD Task cycle minimum time with 1µs resolution

dwMaxScanTime DWORD Task cycle maximum time with 1µs resolution

dwAvgScanTime DWORD Task cycle average time with 1µs resolution

dwLimitMaxScan DWORD Task cycle maximum time before watchdog occurrence

dwIECCycleCount DWORD IEC cycle counter

Table 7-30. GetTaskInfo Returned Parameters

Possible ERRORCODE:

 NoError: success execution

 TaskNotPresent: the desired task does not exist

Example of utilization in ST language:

PROGRAM MainPrg

VAR

sAppName : STRING;

psAppName : POINTER TO STRING;

sTaskName : STRING;

psTaskName : POINTER TO STRING;

pstTaskInfo : POINTER TO stTaskInfo;

TaskInfo : stTaskInfo;

Info : ERRORCODE;

END_VAR

//INPUTS:

sAppName := 'Application'; //Variable receives the application name.

psAppName := ADR(sAppName); //Pointer with application name.

sTaskName := 'MainTask'; //Variable receives task name.

psTaskName := ADR(sTaskName); //Pointer with task name.

pstTaskInfo := ADR(TaskInfo); //Pointer that receives task info.

//FUNCTION:

//Function call.

Info := GetTaskInfo (psAppName, psTaskName, pstTaskInfo);

7. Maintenance

 320

//Variable ‘Info’ receives possible function errors.

Graphic Display

The graphic display available in the Nexto Series CPUs is an important tool for the process control,
as through it is possible to recognize possible error conditions, active components or diagnostics

presence. Besides, all diagnostics including the I/O modules are presented to the user through the

graphic display. For further information regarding the diagnostic key utilization and its visualization
see One Touch Diag section.

Below, on Figure 7-9 it is possible to observe the available characters in the Nexto CPU graphic

display and, next, its respective meanings.

Figure 7-9. CPU Status Screen

Legend:

1. Indication of the CPU status operation. In case the CPU application is running, the state is Run.
In case the CPU application is stopped, the state is Stop. For further details, see Run Mode and

Stop Mode section.

2. Memory Card presence indication. Further details regarding its installation see Memory Card
chapter.

3. COM 1 traffic indication. The up arrow (▲) indicates data transmission and the down arrow (▼)

indicates data reception. For further information regarding the COM 1 interface see Serial

Interfaces section.
4. COM 2 traffic indication. The up arrow (▲) indicates data transmission and the down arrow (▼)

indicates data reception. For further information regarding the COM 1 interface see Serial

Interfaces section.
5. Indication of the CPU active diagnostics quantity. In case the number shown is different than 0

(zero), there are active diagnostics in the CPU. For further details regarding their visualization on

the CPU graphic display, through diagnostic key, see One Touch Diag section.
6. Forced variables in the CPU indication. In case the “F” character is shown in the graphic display,

a variable is being forced by the user, whether symbolic, direct representation or AT. For further

information regarding variable forcing see Run Mode section.

7. Identification of the CPU redundancy state (message only valid in NX3030 in redundant mode).
If the CPU is the active PLC, the ACT information will be presented. The other possible states

are NCF (Not-configured), STR (Starting), INA (Inactive) and SBY (Stand-by).

8. Indication that the project synchronization is being executed. The up arrow (▲) indicates project
data transmission and the down arrow (▼) indicates project data reception. For further

information about the project synchronization see Project Synchronization section.

Besides the characters described above, Nexto CPUs can present some messages on the graphic

display, correspondent to a process which is being executed at the moment.

Table 7-31 present the messages and their respective descriptions:

7. Maintenance

 321

Message Description

FORMATTING... Indicates the CPU is formatting the memory card

FORMATTING ERROR Indicates that an error occurred while formatting the memory

card by the CPU.

WRONG FORMAT Indicates that the memory card format is incorrect.

INCORRECT PASSWORD Indicates the typed password is different from the configured

password

TRANSFERRING... Indicates the project is being transferred

TRANSFERRING ERROR Indicates there is been an error in the project transference
caused by some problem in the memory card or its removal

during transference

TRANSFERRING COMPLETE Indicates the transference has been executed successfully

TRANSFERRING TIMEOUT Indicates a time-out has been occurred (communication time

expired) during the project transference

CPU TYPE MISMATCH Indicates the CPU model is different from the one configured in

the project within the memory card

VERSION MISMATCH
Indicates the CPU version is different from the one configured
in the project within the memory card

APPLICATION CORRUPTED Indicates the application within the memory card is corrupted

APPLICATION NOT FOUND
Indicates there is no application in the memory card to be

transferred to the CPU

CRC NOT FOUND Indicates that the CRC application does not exist.

MCF FILE NOT FOUND Indicates there is no MCF file in the memory card

NO TAG
There is no configured tag for the CPU in the MasterTool IEC

XE

NO DESC
There is no configured description for the CPU in the

MasterTool IEC XE

MSG. ERROR
Indicates that there are error (s) on diagnostics message (s) of
the requested module (s)

SIGNATURE MISSING
Indicates the product presented an unexpected problem. Get in

contact with Altus Technical Support sector

APP. ERROR RESTARTING
Indicates that occurred an error in the application and the

Runtime is restarting the application.

APP. NOT LOADED Indicates that the runtime will not load the application.

LOADING APP. Indicates that the runtime will load the application.

WRONG SLOT Indicates that the CPU is in an incorrect position in the rack.

FATAL ERROR

Indicates that there are serious problems in the CPU startup

such as CPU partitions that were not properly mounted. Please,
contact Altus customer support.

HW-SW MISMATCH
Indicates that the CPU hardware and software are not

compatible because the product presented a unexpected
problem. Please, contact Altus customer support.

UPDATING FIRMWARE Indicates the firmware is being updated in the CPU

RECEIVING FIRMWARE Indicates the updating file is being transferred to the CPU

UPDATED: Shows the firmware version updated in the CPU

UPDATE ERROR
Indicates an error has occurred during the CPU firmware
updating, caused by communication failure or configuration

problems

REBOOTING SYSTEM...
Indicates the CPU is being restarted for the updating to have

effect

Table 7-31. Other Messages of the Graphic Display

7. Maintenance

 322

System Log

The System Log is an available feature in the MasterTool IEC XE programmer. It is an important

tool for process control, as it makes it possible to find events on CPU that may indicate error

conditions, presence of active components or active diagnostics. Such events can be viewed in
chronological order with a resolution of milliseconds, with a storage capacity of up to one thousand

log entries stored in the CPU internal memory, that can’t be removed.

In order to access these Logs, just go to the Device Tree and double-click on Device, then go to the

Log tab, where hundreds of operations can be seen, such as: task max cycles, user access, application
download, online change, application download and upload, application synchronization between

CPUs, firmware update between another events and actions.

In order to view the Logs, just need to be connected to a CPU (Selected Active Path) and click on

. When this button is pressed the Logs are displayed and updated instantly. When the button is
not being pressed the Logs will be hold in the screen, it means, these button has two stages, one hold

the logs state being updated and in the state the updating is disabled. To no longer show the Logs,

press .

It is possible to filter the Logs in 4 different types: Warning(s), Error(s), Exception(s)and
Information(s).

Another way to filter the messages displayed to the user is to select the component desired to view.

The Log tab’s Timestamp is shown by MasterTool after information provided by the device (CPU).

MasterTool can display the Timestamp in local time (computer’s time) or UTC, if UTC Time
checkbox is marked.

ATTENTION:

If the device’s time or time zone parameter are incorrect, the Timestamp shown in MasterTool also

won’t be correct.

For further information about the System Logs please check the MasterTool IEC XE User Manual –

MU299609 and the RTC Clock and Time Synchronization subchapter of this manual.

ATTENTION:

The system logs of the Nexto series CPUs, starting in firmware version 1.4.0.33, are reloaded in the
cases of a restart of the CPU or a reboot of the Runtime System, that is, it will be possible to check

the older logs when one of these situations occurs.

Not Loading the Application at Startup

If necessary, the user can choose to not load an existing application on the CPU during its startup.

Just power the CPU with the diagnostics button pressed and keep it pressed for until the message
“APP. NOT LOAD” is shown in the screen. .. If a login attempt is made, MasterTool IEC XE

software will indicate that there is no application on the CPU. For reloading the application, the CPU

must be reset or a new application download must be done.

Power Supply Failure

The Nexto Series Power Supply (NX8000) has a failure detection system according to the levels
defined in its technical features (see Power Supply 30 W 24 Vdc Technical Features - CE114200).

There are two ways to diagnose a failure.

1 – In case the NX8000 power supply is on with voltage lower than the required minimum limit, a
power supply failure diagnostic is generated, which is recognized by the CPU and the message

“POWER SUPPLY FAILURE” is shown on the display. When the supply is within the established

7. Maintenance

 323

limits, the CPU recognizes it and automatically is restarted with the user application. The diagnostic

will still be active to show to the user that the last initialization suffered a power supply failure.

2 – In case the NX8000 has a voltage drop to an inferior value than the minimum required limit and it
returns to a higher value within 10 ms, the power supply failure is not recognized by the CPU and the

diagnostic is not generated as the system remains intact during this time. But if the voltage drop takes

longer than 10 ms, the “POWER SUPPLY FAILURE” message is shown on the CPU screen and the
diagnostic is activated.

Figure 7-10. Power Supply Failure Message

The user can change the value of the variable attributed to the power supply failure to FALSE during

the applicative execution, facilitating the verification and treatment of this diagnostic.

The POWER SUPPLY FAILURE diagnostic is already mapped in a specific memory region, defined

as CPU Detailed Diagnostic. This way it is just to use it as global variable. The variable name is

described in the detailed diagnostic list in the Diagnostics via Variables chapter.

Common Problems

If, at power on the CPU, it does not work, the following items must be verified:

 Is the room temperature within the device supported range?

 Is the rack power supply being fed with correct the voltage?

 Is the power supply the module inserted on the far left in the rack (observing the rack by the front

view) followed by the Nexto Series CPU?

 Are there network devices, as hubs, switches or routers are powered, interconnected, configured

and working properly?

 Is the Ethernet network cable properly connected to the Nexto CPU NET 1 or NET 2 port and to

the network device?

 Is the Nexto Series CPU on, in execution mode (Run) and with no diagnostics related to

hardware?

If the Nexto CPU indicates the execution mode (Run) but it does not respond to the requested

communications, whether through MasterTool IEC XE or protocols, the following items must be
verified:

 Is the CPU Ethernet parameters configuration correct?

 Is the respective communication protocol correctly configured in the CPU?

 Are the variables which enable the MODBUS relations properly enabled?

If no problem has been identified, consult the Altus Technical Support.

Troubleshooting

Table 7-32 shows the symptoms of some problems with their possible causes and solutions. If the

problem persists, consult the Altus Technical Support.

Symptom Possible Cause Solution

Does not
power on

Lack of power supply or
incorrectly powered.

- Verify if the CPU is connected properly in the rack

- Power off and take off all modules from the bus,

but the power supply and the CPU

- Power on the bus and verify the power supply

functioning, the external and the one in the rack

- Verify if the supply voltage gets to the Nexto

power supply contacts and if is correctly polarized

7. Maintenance

 324

CPU Screen
shows the

message
WRONG SLOT

CPU in a wrong position

For models NX3010, NX3020 and NX3030, the

CPU must be placed in slots 2 and 3 of rack 0. Put
it in the correct slots.

CPUs NX3004 and NX3005 must be placed in slots
0 and 1 of rack 0. Put it in the correct slots..

Does not

communicate

Bad contact or bad

configuration.

- Verify every communication cable connection

- Verify the serial and Ethernet interfaces
configuration in the MasterTool IEC XE software

Does not

recognize the
memory card

Bad connection or not

mounted

- Verify if the memory card is properly connected in

the compartment

- Verify if the memory card was put in the right side,

as indicated on the CPU frontal panel

- Verify if the memory card wasn’t unmounted

through MS button, placed on the frontal panel,
visualizing the indication on the CPU graphic
display

Table 7-32. Troubleshooting Table

Preventive Maintenance

 It must be verified, each year, if the interconnection cables are connected firmly, without dust

accumulation, mainly the protection devices

 In environments subjected to excessive contamination, the equipment must be periodically

cleaned from dust, debris, etc.

 The TVS diodes used for transient protection caused by atmospheric discharges must be

periodically inspected, as they might be damaged or destroyed in case the absorbed energy is

above limit. In many cases, the failure may not be visual. In critical applications, is
recommendable the periodic replacement of the TVS diodes, even if they do not show visual

signals of failure

 Bus tightness and cleanness every six months

 For further information, see Nexto Series Manual - MU214600

8. Glossary

 325

8. Glossary

Active CPU In a redundant system, the Active CPU performs the system control, reading the input points values,

executing the applicative program and driving the output values.

ActivePrg POU from the program type, created automatically, which should be completed by the user. It runs only

on the Active PLC, and used to control the automated process.

Active IP Strategy to facilitate the connection of Ethernet clients to Ethernet servers executed on a redundant PLC.

Active PLC Half-cluster (PLCA or PLCB) which is momentarily in Active state.

Adjust Bridge Address or configuration selecting switch composed by pins present in the circuit board and a small

removable connector, used for selecting.

Addressable Variables The variable can be accessed directly in the memory using the desired address. E.g. QB0%, %MW100.

Applicative Project Part of the project corresponding to the executable code.

Applicative Program It’s the program loaded into a PLC, which determines the operation of a machine or process.

AT Variable Reserved words in the programming software, used to indicate diagnostics.

Bus Electric signals cluster logically grouped with the function to transmit information and control between
different elements of a sub-system.

Bit Basic information unit which can assume state 0 or 1.

Backoff Time the network node type CSMA/CD waits before re-transmit data after the occurrence of collisions in
the physical environment.

Baud rate Rate at which information bits are transmitted via a serial interface or communications network
(measured in bits/second).

Bridge Equipment for connecting two communication networks within the same protocol.

Broadcast Dissemination of information simultaneously to all nodes connected to a communication network.

Byte Information unit composed by 8 bits.

Category 5 One of the UTP cable categories:. Unshielded twisted-pair 100 ohm impedance and electrical

characteristics supporting up to 100 MHz transmission frequency defined by the TIA / EIA 568-A, can be
used in 10Base-T and 100Base networks TX, among others.

Cluster Set formed by the controllers (half-clusters) PLCA and PLCB.

Commercial code Product code, formed by the PO letters followed by four numbers.

Communication

Network

Group of devices (nodes) interconnected by communication channels.

Configuration Module Also called a module C. It is a single module in a PLC program that contains various parameters required
to the controller functioning, such as the amount of variables and layout of the I/O modules in the bus.

CPU Abbreviation for central processing unit. Controls the information flow, interprets and executes program
instructions and monitors the devices in the system.

CSMA/CD Physical layer access protocol, based in data collision, used for Ethernet networks.

Cycle Time It is the time that the CPU takes to run a particular application task.

Database Data base.

Default Pre-defined value for a variable, used in case there’s no definition.

Deterministic

Communication
Network

Communication network where the transmission and reception of information between different nodes is

guaranteed with a maximum known time.

Diagnostic Procedure used to detect and isolate failures. It’s also the data group used for such determination, which
serves for problem analysis and correction.

Direct Representation

Variable

The variable can be accessed directly in memory, using a web address. For example:% QB0,% MW100.

DG Used abbreviation to indicate diagnostics in the LEDs

Download Program or configuration load in the PLC.

ESD Electrostatic discharge.

EIA RS-485 Industrial pattern (physical layer) for data communication.

EN 50170 In PROFIBUS networks, it’s the standard which defines the fieldbus.

Frame An information unit transmitted through the network.

Freeze In PROFIBUS networks, it’s the network state when the input data are frozen.

Full Duplex Indicates that the devices can perform communication by transmitting / receiving data in both directions

simultaneously, i.e. it can transmit and receive at the same time.

Gateway Equipment for connecting two networks with different communication protocols.

Hardkey Connector normally connected to the parallel interface of a PC in order to avoid the execution of software

illegal copies.

Hardware Physical equipment used in data processing where the programs (software) are executed.

8. Glossary

 326

Half-cluster Alternative name for each of the two controllers (PLCB and PLCA) that form a cluster.

Half Duplex Indicates that the devices can perform transmitting communications / receiving data, but only in one

direction at a time, or can transmit or receive data.

HSDN High Speed Deterministic Network. Deterministic network, often redundant, used for exchanging

interlocking messages between interlocking PLCs.

Hot swapping Procedure for replacement of system modules without the need for de-energizing the same. Usually used

in exchanges of I/O modules.

IEC Stands for International Electrotechnical Commission, or International Electrotechnical Commission is an
international standardization body that prepares and publishes international standards for electrical

scope, electronic and related technologies.

IEC 61131 Generic standard for operation and utilization of PLCs. Old IEC 1131.

IEC 61131-3 Third part of the generic standard for operation and use of PLCs, IEC61131.

Interface Device which adapts electrically and/or logically the signal transference between two pieces of
equipment.

Interruption High priority attending event which temporarily stops the program execution and detour for a specific

attending routine.

Interval Defines how often a task is performed..

I/O See Input/output

I/O Modules Module belonging to the inputs and outputs subsystem.

I/O Subsystem Set of analog or digital I/O modules and interfaces of a programmable controller.

Input/output Also called I/O. Data I/O devices of a system. In case of PLCs, typically correspond to digital or analog

inputs or outputs modules which monitor or activate the controlled device.

ISOL. Stands for isolated or isolating.

Kbytes Memory quantity unit. Means 1024 bytes (if 1kbyte).

LCD Acronym for Liquid Crystal Display

LED Light emitting diode. It’s a type of diode that emits light when electrically stimulated. Used for light

indication.

Logic Graphic matrix where are inserted the language instructions of a relay diagram which compose a

applicative program. A group of logics organized in sequence form a program module.

MainPrg POU form the program type, created and filled automatically by MasterTool. The user must not change

this POU.

MainTask The only task allowed by a redundant PLC. Calls the MainPrg program.

MasterTool IEC XE Identifies the Altus program for microcomputers, executable in Windows environment, which allows the

development of applications for the Nexto CPUs series. Throughout the manual, this program is referred
to by the acronym or as MasterTool IEC XE programmer..

Master Equipment connected to a communication network where the commands requests to the other network
devices originate.

Master-Slave

Communication
Network

Communication network where information transfers are initiated only from a single node (network

master) connected to the data bus. The other network nodes (slaves) respond only when requested.

Menu Set of options available and displayed by a program on video and that can be selected by the user to

activate or perform a certain task.

Monomaster In PROFIBUS networks, it’s a network with only one master.

Module address Address which the PLC accesses a specific I/O module.

Module (referencing

hardware)

Basic element of a complete system that has well defined functions. Normally the system is connected by

connectors and can be easily replaced.

Module (referencing

software)

Part of an application program capable of performing a specific function. It can be run independently or in

conjunction with other modules, exchanging information via parameter passing.

Multicast Simultaneous dissemination of information to a particular group of interconnected nodes in a
communication network.

Multimaster In PROFIBUS networks, it’s a network with more than one master.

Multimaster
Communication

Network

Communication network where information transfers are initiated by any node connected to the data bus.

NET 1 and NET 2 Logical names for the Ethernet interfaces present in the NX3010 CPU (NET 1 and NET 2) and modules

NX5000. The CPU NX3010 and the NX5000 modules have only the NET1 interface.

NETA Denomination of one of the two synchronism channels between PLCA and PLCB. The other is called

NETB.

NETB Denomination of one of the two synchronism channels between PLCA and PLCB. The other is called

NETA.

Network Access Method used by all nodes in a communication network to synchronize data transmissions and resolve
potential conflicts of simultaneous transmissions.

NIC Teaming Strategy to define pairs of redundant ports within a half-cluster, sharing the same Ethernet IP address.

Node Any station network with an ability to communicate using a protocol established.

8. Glossary

 327

Non-Active CPU It's the CPU that is not in the active state (controlling the system) or in the stand-by state (overseeing the

Active CPU). It can’t assume control of the system.

Non-Active PLC Half-cluster (PLCA or PLCB) which is momentarily in any state other than Active (Stand-by, Inactive, Not-

configure or Starting).

Non-Redundant Data Variables that are not shared between PLCA and PLCB in a redundant application. These variables
correspond to diagnostic or private command to each half-cluster (PLCA or PLCB).

NonSkippedPrg POU from the program type, created automatically, which should be completed by the user. It is executed
in two PLCs (PLCA and PLCB), and used for actions and private variables management of each PLC

(PLCA and PLCB), such as switchovers diagnostics and management due to not vital failures.

Octet Eight bits group numbered from 0 to 7.

Operands Elements on which the instructions work. They may represent constants, variables or set of variables.

Peer to peer Type of communication where two nodes on a network exchange data and/or warnings without relying on

a master.

PLC Acronym for programmable logic controller.

PLCA Denomination of one of the two controllers composing a redundant PLC. The other is called PLCB.

PLCB Denomination of one of the two controllers composing a redundant PLC. The other is called PLCA.

POU Program Organization Unit or Unit Program Organization, is a subdivision of the application program that
can be written in any of the available languages.

Programming language A group of rules and conventions used for a program creation.

Programmable
controller

Also called PLC. Equipment which executes a control under the applicative program command. It’s
composed by a CPU, a power supply and a I/O structure.

Project Archive Part of the project corresponding to the source code.

Project The PLC project as a whole, composed by the project archive (source code) and by the applicative
project (executable code).

Protocol Rules of procedures and standard formats that through control signals, allow the establishment of a data
transmission and error recovery between equipment.

RAM Acronym for random access memory. It’s where all the memory addresses can be accessed directly at
random and at the same speed. It is volatile, thus, its contents are lost when the device is powered down,

unless you have a battery for retaining values.

Redundant System System that contains reserve elements or doubled to perform a certain task, which can tolerate certain

types of failure without damaging the task execution.

Redundant CPU Corresponds to the other system CPU, e.g. the CPU1 in relation to CPU2 and vice versa.

Redundant PLC Set consisting on a cluster (PLCA and PLCB), PX2612 control panel, and remote I/O systems.

Relays language and

Altus blocks

Group of instructions and variables that allow an applicative program edition to be used in a PLC.

Ripple Ripple present in DC supply voltage.

RS-232C It is a standard for serial data exchange between two points (point to point)

RS-422 It is a standard for serial data exchange between two or more points (point to point full duplex)

RS-485 It is a standard for serial data exchange between two or more points (point to point half duplex).

RunTime See Cycle Time

RX Acronym used to indicate serial reception.

SCADA Supervisory Control and Data Acquisition. Supervisory system used for the plant control and operation.

ScTP Stands for screened twisted pair. Even UTP cable, but all pairs of wires are surrounded by a metal foil or

a metal braid screen, in order to minimize radiation and susceptibility to external noise. It is also known
for SUTP (Screened Unshielded Twisted Pair) or FTP (Foil Twisted Pair).

Serial Channel A device interface that transfers data in serial mode.

Slave Equipment connected to a communication network that transmits data only if requested by another

device called the master.

SNTP Simple Network Time Protocol. Protocol for network time synchronization.

SOE Sequence Of Events. Service to monitor the variation of pre-configured digital inputs, saving the date /

time of the change and its new state.

Software Computer programs, procedures and rules related to the operation of a data processing system.

Socket Device on which integrated circuits or other components fit, making it easier to replace them and

simplifying the maintenance.

Stand-by CPU In a redundant system, it’s the CPU that oversees the Active CPU, not executing the system control, but
being ready to take control in case of failure on the Active CPU.

Stand-by PLC Half-cluster (PLCA or PLCB) which is momentarily in Stand-by state.

Start up Procedure for final clearance of the control system when the programs of all stations and remote CPUs
are run together, having been developed and verified individually.

Subnet Segment of a communication network that interconnects a group of devices (nodes) in order to isolate the
local traffic or use different protocols or physical layer.

Supervision station Equipment connected to a PLC or instrumentation network in order to monitor or control the process

variables.

8. Glossary

 328

Sweeping cycle A complete execution of the applicative program in a programmable controller.

Symbolic Variables IEC Variables created in POUs and GVLs during the applicative development, which are not addressed

directly in the memory.

Tag Name associated with a variable or a logic that allows a brief identification of its contents.

Time-out Predetermined maximum time that a communication is completed. If exceeded retentive or diagnostic

procedures will be activated.

Toggle Element that has two stable states, alternately exchanged each activation.

Token It is a mark that indicates who is the master of the bus at the time.

TX Acronym used to indicate serial transmission.

Upload PLC configuration or program reading.

UTP Stands for unshielded twisted pair. Cable type formed by pairs of unshielded twisted wires. For network
applications, UTP term generally refers to the cable 100 ohms, Category 3, 4 or 5, specified by the TIA /

EIA 568-A. Normally the UTP cable has four pairs of wires twisted within the same sheath (outer
package).

Varistor Protection device against voltage surge.

WD Watchdog.

Word Information unit composed by 16 bits.

Watchdog circuit Electronic circuit used to verify the equipment function integrity.

10Base-T Physical layer for Ethernet type defined in the IEEE 1990 standard supports 802.3i baud rates of 10
Mbps over two pairs of category 3 twisted strands.

Annex A. DNP3 Interoperability

 329

9. Annex A. DNP3 Interoperability

DNP3 Device Profile

DNP3

DEVICE PROFILE DOCUMENT

Device Identification
Vendor Name Altus S/A
Device Name NX3030
Device Function Slave
DNP Levels Supported for Requests: None

Responses: None
Connections Supported IP Networking
Methods to set Configurable Parameters Software: Master Tool IEC XE

IP Networking
Type of End Point: TCP Listening (Outstation Only)
Accepts TCP Connections from Allows all
IP Address(es) from which TCP Connections are

accepted:
..*.*

TCP Listen Port Number Configurable, range 1to 65535
TCP Keep-alive timer Configurable, range 0 to 4294967295
Multiple master connections Supports up to two masters

Based on TCP port number
Time synchronization support SNTP

Link Layer
Data Link Address Configurable, range 0 to 65519
Self Address Support using address 0xFFFC No
Requires Data Link Layer Confirmation Never
Maximum number of octets Transmitted in a Data

Link Frame
Fixed at 292

Maximum number of octets that can be Received

in a Data Link Frame
Fixed at 292

Application Layer
Maximum number of octets Transmitted in an
Application Layer Fragment

Fixed at 2048

Maximum number of octets that can be received in
an Application Layer Fragment

Fixed at 2048

Timeout waiting for Application Confirm of solicited

response message
Fixed at 10000 ms

Device Trouble Bit IIN1.6 This bit will be set if PLC is not in Run mode
Event Buffer Overflow Behavior Discard the oldest event
Sends Multi-Fragment Responses Yes

Outstation Unsolicited Response Support
Supports Unsolicited Reporting No

Annex A. DNP3 Interoperability

 330

DNP V3.0 Implementation Table

DNP OBJECT GROUP & VARIATION REQUEST

Master may issue

Outstation must parse

RESPONSE

Master must parse

Outstation may issue
Group
Num

Var

Num
Description Function

Codes

(dec)

Qualifier
Codes

(hex)

Function
Codes

(dec)

Qualifier
Codes

(hex)
1 0 Binary Input – Any

Variation
1 (read) 00, 01 (start-

stop)

06 (no range,
or all)

1 1 Binary Input – Packed
format

1 (read) 00, 01 (start-
stop)

06 (no range,
or all)

129
(response)

00, 01
(start-stop)

2 0 Binary Input Event – Any

Variation
1 (read) 06 (no range,

or all)

07, 08 (limited

qty)

2 2 Binary Input Event – With

absolute time
1 (read) 06 (no range,

or all)

07, 08 (limited

qty)

129

(response)

17, 28

(index)

60 1 Class Objects – Class 0
data

1 (read) 06 (no range,
or all)

60 2 Class Objects – Class 1
data

1 (read) 06 (no range,
or all)

07, 08 (limited
qty)

80 1 Internal Indications –

Packed format
1 (read) 00, 01 (start-

stop)
129

(response)
00 (start-

stop)
2 (write) 00 (start-stop)

index=7

	1. Introduction
	Nexto Series
	Innovative Features

	Documents Related to this Manual
	Visual Inspection
	Technical Support
	Warning Messages Used in this Manual

	2. Technical Description
	Panels and Connections
	General Features
	Common General Features
	Specific Features
	Serial Interfaces
	COM 1(NX3010/NX3020/NX3030)
	COM 1 (NX3004/NX3005) and COM 2 (NX3010/NX3020/NX3030)

	Ethernet Interfaces
	NET 1
	NET 2

	Power Supply

	Compatibility with Other Products
	Performance
	Application Times
	Time for Instructions Execution
	Initialization Times
	Interval Time

	Physical Dimensions
	NX3004/NX3005
	NX3010/NX3020/NX3030

	Purchase Data
	Integrant Items
	Product Code

	Related Products

	3. Installation
	Mechanical Installation
	NX3004 and NX3005
	NX3010, NX3020 and NX3030

	Electrical Installation
	NX3004 and NX3005
	NX3010, NX3020 and NX3030

	Ethernet Network Connection
	IP Address
	Gratuitous ARP
	Network Cable Installation

	Serial Network Connection RS-232
	RS-232C Communication

	Serial Network Connection RS-485/422
	RS-485 Communication without termination
	RS-485 Communication with Internal Termination
	RS-485 Communication with External Termination
	Example of Connection of a RS-485 Network with External Termination and Master Redundancy
	RS-422 Communication without Termination
	RS-422 Communication with Internal Termination
	RS-422 Communication with External Termination
	RS-422 Network Example

	Memory Card Installation
	Architecture Installation
	Module Installation on the Main Backplane Rack

	Programmer Installation

	4. Configuration
	CPU Configuration
	General Parameters
	Hot Swap
	Hot Swap Disabled, for Declared Modules Only
	Hot Swap Disabled
	Hot Swap Enabled with Consistency in the Start Only for Declared Modules
	Hot Swap Enabled with Startup Consistency
	Hot Swap Enabled without Consistency in the Start
	How to do the Hot Swap

	Retain and Persistent Memory Areas
	TCP Configurations
	Project Parameters

	External Event Configuration
	SOE Configuration
	Time Synchronization
	Daylight Saving Time (DST)

	Serial Interfaces Configuration
	COM 1 (NX3010/NX3020/NX3030)
	Advanced Configurations

	COM1 (NX3004/NX3005) and COM 2 (NX3010/NX3020/NX3030)
	Advanced Configurations

	Ethernet Interfaces Configuration
	Local Ethernet Interfaces
	NET 1
	NET 2

	Remote Ethernet Interfaces
	NET 1

	Reserved TCP Ports

	NX5000 Module Configuration
	Protocols Configuration
	Protocol Behavior x CPU State
	MODBUS RTU MASTER
	MODBUS Master Protocol Configuration by Symbolic Mapping
	MODBUS Master Protocol General Parameters – Symbolic Mapping Configuration
	Devices Configuration – Symbolic Mapping configuration
	Mappings Configuration – Symbolic Mapping Settings
	Requests Configuration –Symbolic Mapping Settings

	MODBUS Master Protocol Configuration for Direct Representation (%Q)
	General Parameters of MODBUS Master Protocol -setting by Direct Representation (%Q)
	Devices Configuration – Configuration for Direct Representation (%Q)
	Mappings Configuration – Configuration for Direct Representation (%Q)

	MODBUS RTU SLAVE
	MODBUS Slave Protocol Configuration via Symbolic Mapping
	MODBUS Slave Protocol General Parameters – Configuration via Symbolic Mapping
	Configuration of the Relations – Symbolic Mapping Setting

	MODBUS Slave Protocol Configuration via Direct Representation (%Q)
	General Parameters of MODBUS Slave Protocol – Configuration via Direct Representation (%Q)
	Mappings Configuration – Configuration via Direct Representation (%Q)

	MODBUS Ethernet
	MODBUS Ethernet CLIENT
	MODBUS Ethernet Client Configuration via Symbolic Mapping
	MODBUS Client Protocol General Parameters – Configuration via Symbolic Mapping
	Device Configuration – Configuration via Symbolic Mapping
	Mappings Configuration – Configuration via Symbolic Mapping
	Requests Configuration – Configuration via Symbolic Mapping

	MODBUS Ethernet Client configuration via Direct Representation (%Q)
	General parameters of MODBUS Protocol Client-configuration for Direct Representation (% Q)
	Device Configuration – Configuration via Direct Representation (%Q)
	Mapping Configuration – Configuration via Direct Representation (%Q)

	MODBUS Ethernet SERVER
	MODBUS Server Ethernet Protocol Configuration for Symbolic Mapping
	MODBUS Server Protocol General Parameters – Configuration via Symbolic Mapping
	MODBUS Server Diagnostics – Configuration via Symbolic Mapping
	Mapping Configuration – Configuration via Symbolic Mapping

	MODBUS Server Ethernet Protocol Configuration via Direct Representation (%Q)
	General Parameters of MODBUS Server Protocol – Configuration via Direct Representation (%Q)
	Mapping Configuration – Configuration via Direct Representation (%Q)

	OPC DA
	Creating a Project for OPC Communication
	Configuring a PLC on the OPC Server
	Importing a Project Configuration

	Configuration with the PLC on the OPC Server with Connection Redundancy
	OPC Communication Quality and Status Variables
	OPC Server Communication Limits
	Accessing data Through an OPC Client

	EtherCAT
	Installing and inserting EtherCAT Devices
	Scan For Devices

	Diagnostic Variables
	EtherCAT Master Settings
	Master Parameters
	I/O Mapping
	Status and Information Tabs

	EtherCAT Slave Configuration
	Slave Parameters
	FMMU/Sync
	FMMU
	Sync Manager

	Process Data and Expert Process Data
	Editing the PDO List
	Definition of the PDO Content

	Startup Parameters
	Online
	I/O Mapping
	Status and Information tabs

	EtherNet/IP
	EtherNet/IP Interface
	EtherNet/IP Scanner Configuration
	General
	Connections
	Assemblies
	EtherNet/IP I/O Mapping

	EtherNet/IP Adapter Configuration
	Module Types
	EtherNet/IP Module I/O Mapping

	Communication Performance
	Communication Rate of a MODBUS Server Device
	CPU’s Local Interfaces
	Remote Interfaces

	Communication Rate of a Device with OPC Server
	MODBUS Client Relation Start in Acyclic Form

	System Performance
	I/O Scan Time
	Memory Card

	RTC Clock
	Function Blocks for RTC Reading and Writing
	Function Blocks for RTC Reading
	GetDateAndTime:
	GetTimeZone
	GetDayOfWeek

	Function Blocks and Functions of RTC Writing and Configuration
	SetDateAndTime
	SetTimeZone

	RTC Data Structures
	EXTENDED_DATE_AND_TIME
	DAYS_OF_WEEK
	RTC_STATUS
	TIMEZONESETTINGS

	User Files Memory
	Memory Card
	MasterTool Access

	CPU’s Informative and Configuration Menu
	Function Blocks and Functions
	Special Function Blocks for Serial Interfaces
	SERIAL_CFG
	SERIAL_GET_CFG
	SERIAL_GET_CTRL
	SERIAL_GET_RX_QUEUE_STATUS
	SERIAL_PURGE_RX_QUEUE
	SERIAL_RX
	SERIAL_RX_EXTENDED
	SERIAL_SET_CTRL
	SERIAL_TX

	Inputs and Outputs Update
	REFRESH_INPUT
	REFRESH_OUTPUT

	PID Function Block
	Timer Retain
	TOF_RET
	TON_RET
	TP_RET

	Non-Redundant Timer
	TOF_NR
	TON_NR
	TP_NR

	User Log
	UserLogAdd
	UserLogDeleteAll

	SNMP
	Introduction
	SNMP in Nexto CPUs
	Private MIB
	Configuration
	User and SNMP Communities

	User Management and Access Rights

	5. Initial Programming
	Memory Organization and Access
	Project Profiles
	Single
	Basic
	Normal
	Expert
	Custom
	Machine Profile
	General Table
	Maximum Number of Tasks

	CPU Configuration
	Libraries
	Inserting a Protocol Instance
	MODBUS RTU
	MODBUS Ethernet

	Finding the Network
	Login
	Run Mode
	Stop Mode
	Writing and Forcing Variables
	Logout
	Project Upload
	CPU Operating States
	Run
	Stop
	Breakpoint
	Exception
	Reset Warm
	Reset Cold
	Reset Origin

	6. Redundancy with NX3030 CPU
	Introduction
	Technical Description and Configuration
	Minimum Configuration of a Redundant CPU (Not Using PX2612 Panel)
	Typical Configurations of a Redundant CPU
	NX5001 Modules Addition for PROFIBUS Networks
	NX5000 Modules Addition for Ethernet Networks

	NX4010 Module
	NX4010 Features

	Redundancy Control Panel PX2612
	PX2612 Features

	Interconnections between Half-Clusters and the Redundancy Control Panel PX2612
	General Features
	Purchase Data

	Principles of Operation
	NX3030 CPU Identification
	Single Redundant Project
	Redundant Project Structure
	Redundancy Template
	Single and Cyclic Task MainTask
	MainPrg Program
	ActivePrg Program
	NonSkippedPrg Program
	Redundant and Non-redundant Variables
	Redundant and Non-redundant %I Variables
	Redundant and Non-redundant %Q Variables
	Redundant and Non-redundant %M Variables
	Redundant and Non-redundant Symbolic Variables

	Multiple Mapping
	Diagnostics, Commands and User Data Structure
	Cyclic Synchronization Services through NETA and NETB
	Diagnostics and Commands Exchange
	Redundant Data Synchronization
	Redundant Forcing List Synchronization

	Sporadic Synchronization Services through NETA and NETB
	Project Synchronization

	Project Synchronization Disabling
	PROFIBUS Network Configuration
	PROFIBUS Redundancy
	PROFIBUS Failure Modes Vital and Not-Vital

	Redundant Ethernet Networks with NIC Teaming
	IP Change Methods
	Fixed IP
	Exchange IP
	Active IP
	Multiple IP

	NIC Teaming and Active IP Combined Use
	Ethernet Interfaces Use with Vital Fault Indication
	Failure in Ethernet Interface
	Failure in Connected MODBUS Server

	OPC Communication Use with Redundant Projects
	Redundant CPU States
	Not-Configured State
	Starting State
	Active State
	Stand-By State
	Inactive State

	PX2612 Redundancy Command Panel Functions
	PX2612 Buttons
	PX2612 LEDs
	PX2612 Relays

	Transition between Redundancy States
	Transition 1 – Not-Configured to Starting
	Transition 2 – Starting to Not-Configured
	Transition 3 – Starting to Inactive
	Transition 4 – Starting to Active
	Transition 5 – Starting to Stand-by
	Transition 6 – Inactive to Not-Configured
	Transition 7 – Active to Not-Configured
	Transition 8 – Active to Inactive
	Transition 9 – Active to Stand-by
	Transition 10 – Stand-by to Not-Configured
	Transition 11 – Stand-by to Inactive
	Transition 12 – Stand-by to Active

	First Instants in Active State
	Common Failures which Cause Automatic Switchovers between Half-Clusters
	Failures Associated to Switchovers between Half-Clusters Managed by the User
	Fault Tolerance
	Simple Failure with Unavailability
	Simple Failure without Unavailability Causing a Switchover
	Double Failure without Unavailability Causing a Switchover

	Redundancy Overhead

	Redundant CPU Programming
	Wizard for a New Redundant Project Creation
	Half-Clusters Configuration
	Fixed Configuration in the 0 to 5 Rack Positions

	Ethernet Ports Configuration in the CPU NX3030 (NET 1 and NET 2)
	IP Address Configuration
	NIC Teaming between NET 1 and NET 2
	Vital failure setting in NET 1 and NET 2

	NX5001 Modules Configuration
	Insertion or Removal of NX5001 modules
	NX5001 Modules Parameters Adjust
	PROFIBUS Remotes Configuration

	NX5000 Modules Configuration
	NX5000 Modules Insertion or Removal
	NX5000 Modules Configuration
	NX5000 Modules Grouping with NIC Teaming Redundancy
	Failure Vital Setting

	NX4010 Redundancy Configuration
	I/O Drivers Configuration
	MainTask Configuration
	ActivePrg Program
	NonSkippedPrg Program

	Redundancy Configuration Object
	GVL Diagnostics
	GVLs with Redundant Symbolic Variables
	POUs from the Program Type with Redundant Symbolic Variables
	Breakpoints Utilization in Redundant Systems
	MODBUS Instances Managing in Redundant System
	Limitations on a Redundant PLC Programming
	Limitations in Redundant GVLs and POUs
	Non-redundant Program Limitations (NonSkippedPrg)

	Getting the Redundancy State of a Half-Cluster
	Reading Non-Redundant Diagnostics

	Redundant CPU Program Downloading
	Initial Downloading of a Redundant Project
	First Step – IP Address Discovering for MasterTool Connection
	Second Step – Verifying IP Addresses Conflict
	Third Step – Preparing MasterTool Connection (Set Active Path)
	Forth Step – Identifying the NX3030 CPU and Verifying the CPU Display
	Fifth Step – Redundant Project Downloading

	MasterTool Connection with a NX3030 CPU from a Redundant PLC
	Modification Download in a Redundant Project
	Off-Line and On-Line Modifications Download
	Modifications which Demand Off-Line Download and the Interruption of the Process Control
	Modifications which Demand Off-Line Download
	Modifications which Allow On-Line Download

	On-Line Download of Modifications
	Off-Line Download of Modifications with Process Control Interruption
	Previous Planning for Off-Line Modifications without Process Control Interruption
	Previous Planning for Hot Modifications in Redundant PROFIBUS Networks
	Step 1 – Plan Future Expansion of the Remotes Inserted in the PROFIBUS Network Initial Version
	Step 2 – Insert the Redundant PROFIBUS Network Initial Version in the Project
	Step 3 – Allocate %I and %Q Variables Areas for the PROFIBUS Network considering Future Remote Expansion

	Previous Planning for Other Hot Modifications
	Incompatibility of Applications
	Project Update due to MasterTool IEC XE Update
	Updating Project from Versions Previous to 2.00 to version 2.00 or Higher

	Exploring the Redundancy for Off-Line downloading of Modifications without Interruption of the Process control
	Step 1 – Verify Basic Requirements Attending
	Step 2 – Don’t Download in Group Modifications which can be downloaded On-Line
	Step 3 – Previous Project Backup
	Step 4 – Cares in Editing the Off-line Downloaded Modifications
	Step 5 – Inactive PLC Project Synchronism Disabling
	Step 6 – Physical Modifications Executing
	Step 7 – Download the Off-Line Modifications in the Non-Active PLC
	Step 8 – Set the Non-Active PLC Back to Run Mode to make go back to Stand-by State
	Step 9 – Execute Switchover between Active and Stand-by PLCs
	Step 10 – Projects Synchronism Enabling in the Active PLC
	Step 11 – Optional Reorganization of PLC and PROFIBUS Networks in Active State

	Maintenance
	Modules Hot Swapping in a Redundant PLC
	MasterTool Warning Messages
	Blocking of Redundant or Non-Redundant Project Download
	Warnings before Commands which may stop the Active PLC
	Warning before Logging to the Non-Active PLC

	Redundancy Diagnostics on the NX3030 CPU Graphic Display
	CPU Redundancy State
	Screens below the REDUNDANCY Menu

	Redundancy Diagnostics Structure
	Redundancy Diagnostics
	Redundancy Commands
	User Information Exchanged between PLCA and PLCB
	Modbus Diagnostics used at Redundancy
	Redundancy Event Log

	PX2612 Panel Test
	Test Mode Entry
	Test Mode Manual and Automatic Outputs
	LEDs Testing
	Buttons Test
	Relay Test
	Suggested Sequence for PX2612 Test Executing

	7. Maintenance
	Module Diagnostics
	One Touch Diag
	Diagnostics via LED
	DG (Diagnostic)
	WD (Watchdog)
	RJ45 Connector LEDs

	Diagnostics via WEB
	Diagnostic Explorer
	Diagnostics via Variables
	Summarized Diagnostics
	Detailed Diagnostics

	Diagnostics via Function Blocks
	GetTaskInfo

	Graphic Display
	System Log
	Not Loading the Application at Startup
	Power Supply Failure
	Common Problems
	Troubleshooting
	Preventive Maintenance

	8. Glossary
	9. Annex A. DNP3 Interoperability
	DNP3 Device Profile
	DNP V3.0 Implementation Table

